NanoZnO as an efficient & reusable catalyst for the preparation of 1,4-DHPs via Hantzsch reaction

Authors

Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.

Abstract

Easily prepared nanoZnO was found to be as an efficient catalyst in the synthesis of 1,4-DHPs via four-component reaction of 1,3-dicarbonyls, aldehydes and ammonium carbonate in water at 60 °C. The prepared nanoZnO was characterized by XRD and FT-IR analysis, while the determined specific surface area of nano catalyst by BET method was 33 m2/g.

Keywords


[1] G. Sartori, R. Maggi, Chem. Rev. 113 (2010) PR1–PR54.

[2] B. Karimi, J. Maleki, J. Org. Chem. 68 (2003) 4951–4954.

[3] E.K. Goharshadi, Y. Ding, P.J. Nancarrow, Phys. Chem. Solids 69 (2008) 2057–2060.

[4] Y.J. Kim, R.S. Varma, Tetrahedron Lett. 45 (2004) 7205–7208.

[5] M.F. Garca, A.M. Arias, J.C. Hanson, J.A. Rodriguez, Chem. Rev. 104 (2004) 4063.–4104.

[6] M. Hosseini-Sarvari, H. Sharghi, J. Org. Chem. 71 (2006) 6652–6654.

[7] R. Jalal, E.K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, P. Nancarrow, Mater, Chem. Physic. 121 (2010) 198–201.

[8] F. Tamaddon, M.R. Sabeti, A.A. Jafari, F. Tirgir, E. Keshavarz, J. Mol. Catal. A: Chem. 351 (2011) 41–45.

[9] F. Tamaddon, A. Nasiri, S. Farokhi, Catal. Commun. 12 (2011) 1477–1482.

[10] F. Tamaddon, M.A. Amrollahi, L. Sharafat, Tetrahedron Lett. 46 (2005) 7841–7844.

[11] S. Ashoka, P. Chithaiah, K.V. Thipperudraiah, G.T. Chandrappa, Chim. Acta 363 (2010) 3442–3447.

[12] F. Matloubi Moghaddam, H. Saeidian, Z. Mirjafary, A. Sadeghi J. Iran. Chem. Soc. 6 (2009) 317–324.  

[13] B. Bülbül, G. S. Oztürk, M. Vural, R. Şimşeka, Y. Sarioğlu, A. Linden, M. Ülgen, C. Şafak, Eur. J. Med. Chem. 44 (2009) 2052–2058.

[14] R. Miri, K. Javidnia, H. Sarkarzadeh, B. Hemmateenejad, Bio. Med. Chem. 14 (2006) 4842–4849.

[15] J. Safari, S.H. Banitaba, S.D. Khalili, J. Mol. Catal. A: Chem. 335 (2011) 46–50.

[16] G.M. Reddy, M. Shiradkar, A.K. Chakravarthy, Curr. Org. Chem. 11 (2007) 484–487.

[17] M. Khoshneviszadeh, N. Edraki, K. Javidnia, A. Alborzi, B. Pourabbas, J. Mardaneh, R. Miri, Bioorg. Med. Chem. 17 (2009) 1579–1586.

[18] K. Sirisha, D. Bikshapathi, G. Achaiah, V.M. Reddy, Eur. J. Med. Chem. 46 (2011) 1564–1571.

[19] A.M. Vijesh, A.M. Isloor, S.K. Peethambar, K.N. Shivananda, T. Arulmoli, N.A. Isloor, Eur. J. Med. Chem. 46 (2011) 5591–5597.

[20] D. Shahabi, M.A. Amrollahi, A.A. Jafari, J. Iran. Chem. Soc. (2011) 1052-1057.

[21] A. Hantzsch, Justus Liebigs Ann. Chem. 215 (1882) 1–82.

[22] F. Tamaddon, Z. Razmi, A. A. Jafari. Tetrahedron Lett. 51 (2010) 1187–1189.

[23] J.L. Wang, B-K. Liu, C. Yin, Q. Wu, X.-F. Lin, Tetrahedron 67 (2011) 2689–2692.

[24] M.A. Chari, K. Syamasundar, Catal. Commun. 6 (2005) 624–626.

[25] S. Sueki, R. Takei, J. Abe, I. Shimizu, Tetrahedron Lett. 52 (2011) 4473–4477.

[26] A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati, B. Carboni, Tetrahedron Lett. 50 (2009) 5248–5250.

[27] E. Rafiee, S. Eavani, S. Rashidzadeh, M. Joshaghani, Inorg. Chim. Acta. 362 (2009) 3555–3562.

[28] M. Muruganandham, J.J. Wu, Appl. Catal. B: Environ. 80 (2008) 32–41.

[29] N. Faal Hamedani, F. Farzaneh, J. Sci. 17 (2006) 231–234.

[30] C. A. Antonyraj, S. Kannan, Appl. Catal. 338 (2008) 121–129.