Nano SiO2/H2SO4 as catalyst for the Beckmann rearrangement and deoximation of aldoximes

Authors

Department of Chemistry, Faculty of Science, Urmia University, Urmia 57159-165, Iran.

Abstract

Nano silica-H2SO4 is an efficient and mild catalysis system for the regeneration of aldehyde from aldoximes. Ketoximes are converted to amides by Beckmann rearrangement in the presence of nano silica-H2SO4. The reactions are carried out in solvent-free conditions under microwave irradiation (600 W) within 50-120 sec in good yields.

Keywords


[1] A.I. Mikhaleva, A.B. Zaitsev, B.A. Trofimov, Russ. Chem. Rev. 75 (2006)797-823.
[2] L.G. Donaruma, W.Z. Heldt, Org. React. 11 (1960) 1-156.
[3] T.W. Greene, P.G.M. Wuts, Protective Groups in Organic Synthesis, Wiley, New York, 1991.
[4] S.J. Chen,F. W. Fowler, J. Org. Chem. 35 (1970) 3987-3988.
[5] M. Anilkumar٫ W.F. Hoelderic, Catal. Today. 198 (2012) 289-299.
[6] T. Mitsudome٫ T. Matsuno٫ S. sueoka٫ T. Mizugaki٫ K. Jitsukawa٫ Tetrahedron Lett. 53 (2012) 5211-5214.
[7] K. You٫ L. Mao٫ D. Yin٫ P. Liu٫ H. Anluo, Catal. Commun. 9 (2008) 1521-1526.
[8] D. Li, F. Shi, S. Guo, Y. Deng,Tetrahedron Lett. 46 (2005) 671-674.
[9] C.M. Albaneseb٫ D. Landinib٫ Tetrahedron 68 (2012) 1947-1950.
[10] D. Patil٫ D. Dalal٫ Syn.Commun. 43 (2013)118-128.
[11] R.N. Srinivasa, R.R. Buchi, K. Mukkanti. Tetrahedron Lett. 52 (2011) 4888-4891.
[12] A.R. Sardarian, Z. Shahsavari-Fard, H.R. Shahsavari and Z. Ebrahimi. Tetrahedron Lett. 48 (2007) 2639-2643.
[13] G.H. Posner, Angew. Chem. Int. Ed. Engl. 17 (1978) 487-496.
[14] (a) M. Beller, H. Fischer, K. Kuhlein, C-P. Reisinger, W.A. Hermann, J. Organomet. Chem. 520 (1996) 257-259. (b) M.T. Reetz., G. Lohmer, J. Chem. Soc., Chem. Commun. 1996, 1921-1922.
[15] X. Luo, C. Zha, B. Luther-Davies, J. Sol-Gel Science and Technology 32 (2004) 297–301.
[16] H. Izutsu, F. Mizukami, Y. Kiyozuma, K. Maeda, J. Mater. Chem. 7(8) (1997) 1519–1525.
[17] S.K. Parida, S. Dash, S. Patel, B.K. Mishra, Advances in Colloid and Interface Science 121 (2006) 77–110.
[18] D.L. Wood, E.M. Rabinovich, Appl. Spectrosc. 43 (1989) 263-267.
[19] R.D. Anjos, M.R. Ismael, I.R. Oliveria, V.C. Pandolfelli, Ceramic International. 34 (2008) 1-38.
[20] L.P. Singh, S.K. Agarwal, S.K. Bhattacharyya, U. Sharma, S. Ahalawat, Nanomater. nanotechnol. 1 (2011) 44-51.
[21] K.C. Chen, T. Tsuchiya, J.D. Mackenzie, J. Non-Crystaline Solids 81 (1986) 227-237.
[22] I. Abrahman٫ V. Akumar, J. Nanomaterials (2012) 15-17.
[23] B. Wang, Y. Gu, C. Luo, T. Yang, L. Yang, J. Suo, Tetrahedron Lett. 45 (2004) 3369–3372.
[24] L. Xiao, C. Xia. J. Chen, Tetrahedron Lett. 48 (2007) 7218–7221.
[25] X. Wang, L. Li, Zh. Jun, H. Peng Gong, H. Lin Ye, X. Feng Cao, Chin. Chem.Lett. 20 (2009) 651–655.
[26] K. Banerjee, A.K. Mitra, Indian J. Chem. 44B (2005) 1876-1879.
[27] A.R. Sardarian, Z. Shahsavari-Fard, H.R. Shahsavari, Z. Ebrahimi, Tetrahedron Lett. 48 (2007) 2639–2643.
[28] F.M. Moghaddam, A.A. Rastegar Rad, H. Zali-Boinee, Syn. Commun. 34(2004) 2071–2075.
[29] H. Eshghi, Z. Gordi, Syn. Commun. 33(2003) 2971–2978.
[30] J. K. Augustine, R. Kumar, A. Bombrun, A. B. Mandal, Tetrahedron Lett. 52 (2011) 1074–1077.
[31] Aldrich Handbook of Fine Chemicals and Laboratory Equipment, ( AldrichChem& Co) 2003-2004.
[32] H. Sharghi, M. Hosseini, Synthesis (2002) 1057-1059.
[33] D. R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press, 2006.
[34] B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith, A.R. Tatchell, Qualitative organic analysis; physical constant of organic compounds. In Vogel’s Textbook of Practical Org anic Chemistry, 4th ed., Longman: London & New York, 1978, pp. 1113-1222.
[35] R.C. Weast, J.G. Graffelli, Handbook of Data on Organic Compounds, 2nd ed. 1989.