Improving methodology for the preparation of highly substituted imidazoles using nano-MgAl2O4 as catalyst under microwave irradiation

Authors

Laboratory of Organic Chemistry Research, Department of Chemistry, College of Chemistry, University of Kashan, Kashan, P.O. Box: 87317-51167, Kashan, Islamic Republic of Iran.

Abstract

An efficient synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles by one-step condensation of  an aldehyde, benzil, ammonium acetate and primary amine in the presence of nanocrystalline magnesium aluminate under microwave irradiation is described. The advantages of this catalyst are including simple work-up, low cost and reusability. Compared with conventional methods, the main advantages of the present procedure are its being a green method, its milder conditions, necessary shorter reaction time, and its higher yields and its selectivity. The structures of products were characterized by 1H NMR, 13C NMR, IR, elemental analyses, MS and UV spectral data. Their melting points were compared with literature report.

Keywords


[1] (a) K.M. El-Shaieb, Heteroat. Chem. 17 (5) (2006) 365–368. (b) M. Fantini, V. Zulini, M.A. Spotti, M. Rivara, J. Comb. Chem. 12 (1) (2010) 181–185. (c) K. Shelke, G. Kakade, B. Shingate, M. Shingare, Rasayan J. Chem. 1 (2008) 489–494. (d) G.W. Gribble, J.A. Joule, Progress in Heterocyclic Chemistry, Eds Elsevier, 2009, 26, 232.
[2] (a) G. Xu, Y.G. Wang, Org. Lett. 6 (6) (2004) 985–987. (b) A.L.D. Hoz, A. Diaz-Ortiz, A. Moreno, Curr. Org. Chem. 8 (10) (2004) 903–918.
[3] D.E. Golan, A.W. Armstrong, Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy, Wolters Kluwer Health, 2007.
[4] N.R. Bhat, P.S. Zhang, S.B. Mohanty, Neurochem. Res. 32 (2007) 293–302.


[5] S.L. Gaonkar, K.M. Lokanatha Rai, N. Suchetha Shetty, Med. Chem. Res. 18 (2009) 221–230.
[6] M.S. Sham, J. Shubhi, D. Monica, K. Ashok, Med. Chem. 4 (2008) 146–154.
[7] F. Bellina, S. Cauteruccio, S. Montib, R. Rossi, Bioorg. Med. Chem. Lett. 16 (2006) 5757–5762.
[8] M. Misono, Chem. Commun. (2001) 1141–1152.
[9] Q. Zhao, S.J. Liu, M. Shi, F.Y. Li, H. Jing, T. Yi, Organometallics 26 (2007) 5922–5930.
[10] W. Peter, K. Wilhelm, Angew. Chem. Int. Edit. 39 (2000) 3772–3789.
[11] A. Satake, M. Fujita, Y. Kurimotoa, Y. Kobuke, Chem. Commun. (2009) 1231–1233.
[12] K. Kameyama, A. Satake, Y. Kobuke, Tetrahedron Lett. 45 (2004) 7617–7620.
[13] N. Nagata, S. Kugimiya, Y. Kobuke, Chem. Commun. (2000) 1389–1390.
[14] M. Morisue, K. Ogawa, K. Kamada, K. Ohtab, Y. Kobuke, Chem. Commun. 46 (2010) 2121–2123.
[15] J.Y. Liu, P.C. Lo, D.K.P. Ng, Struct. Bond. 135 (2010) 169–210.
[16] K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, K. Ohta, J. Phys. Chem. B. 109 (2005) 22003–22012.
[17] Y. Miyazaki, A. Satake, Y. Kobuke, J. Mol. Catal. A. Chem. 283 (2008) 129–139.
[18] F. Bellina, S. Cauteruccio, R. Rossi, Tetrahedron 63 (2007) 4571–4624.
[19] S. Park, O.H. Kwon, S. Kim, S. Park, M.G. Choi, M. Cha, S.Y. Park, D.J. Jang, J. Am. Chem. Soc. 127 (2005) 10070–10074.
[20] Y.F. Sun, Y.P. Cui, Dyes Pigm. 81 (2009) 27–34.
[21] Y.F. Sun, W. Huang, C.G. Lu, Y.P. Cui, Dyes Pigm. 81 (2009) 10–17.
[22] H.J. Zhu, J.S. Wang, K.S. Patrick, J.L. Donovan, C.L. DeVane, J.S. J. Markowitz, B. Chromatogr, Anal. Technol. Biomed. Life Sci. 858 (2007) 91–95.
[23] K. Nakashima, H. Yamasaki, N. Kuroda, S. Akiyama, Anal. Chim. Acta 303 (1995) 103–107.
[24] N. Kuroda, R. Shimoda, M. Wada, K. Nakashima, Anal. Chim. Acta 403 (2000) 131–136.
[25] M. Staehelin, D.M. Burland, M. Ebert, R.D. Miller, B.A. Smith, R.J. Twieg, W. Volksen, C.A. Walsh, Appl. Phys. Lett. 61 (1992) 1626–1628.
[26] D. Davidson, M. Weiss, M. Jelling, J. Org. Chem. 2 (1937) 319–327.
[27] R. Conssoni, P.D. Croce, R. Ferraccioli, L.A. Rosa J. Chem. Res. (s) (1991) 188–189.
[28] C.F. Claiborne, N.J. Liverton, K.T. Nguyen, Tetrahedron Lett. 39 (1998) 8939–8842.
[29] A. Teimouri, A.N. Chermahini, J. Mol. Catal. A: Chem. 346 (2011) 39–45.
[30] B.F. Mirjalili, A.H. Bamoniri, L. Zamani, Sci. Iran. 19 (3) (2012) 565–568.
[31] (a) D.A. Evans, K.M. Lundy, J. Am. Chem. Soc. 114 (4) (1992) 1495–1496. (b) P. Schneiders, J. Heinze, H. Baumgartel, Chem. Ber. 106 (1973) 2415–2417.
[32] E.N. Alvar, M. Rezaei, H.N. Alvar, Powder Technol. 198 (2010) 275–278.
[33] A.R. Khosropour, Ultrason. Sonochem. 15 (2008) 659–664.
[34] X.C. Wang, H.P. Gong, Z.J. Quan, L. Li, H.L. Ye, Chin. Chem. Lett. 20 (2009) 44–47.
[35] S.D. Sharma, P. Hazarika, D. Konwar, Tetrahedron Lett. 49 (2008) 2216–2220.
[36] A. Teimouria, A. Najafi Chermahini, J. Mol. Catal. A: Chem. 346 (2011) 39–45.
[37] M.M. Khodaei, K. Bahrami, I. Kavianinia, J. Chin. Chem. Soc. 54 (2007) 829–833.
[38] A. Shaabani, A. Rahmati, J. Mol. Catal. A: Chem. 249 (2006) 246–248.
[39] A. Shaabani, A. Maleki, M. Behnam, Synth. Commun. 39 (2009) 102–110.
[40] H. Zang, Q. Su, Y. Mo, B. Cheng, S. Jun, Ultrason. Sonochem. 17 (2010) 749–751.
[41] A. Teimouria, A. Najafi Chermahini, J. Mol. Catal. A Chem. 346 (2011) 39–45.
[42] A. Shaabani, A. Rahmati, J. Mol. Catal. A Chem. 249 (2006) 246.
[43] X.C. Wang, H.P. Gong, Z.J. Quan, L. Li, H.L. Ye, Chin. Chem. Lett. 20 (2009) 44–47.
[44] M.G. Shen, C. Cai, W.B. Yi, J. Fluorine Chem. 129 (2008) 541–544.
[45] K.F. Shelke, S.B. Sapkal, G.K. Kakade, B.B. Shingate, M.S. Shingare, Green Chem. Let. Rev. 3 (2010) 27–32.
[46] M.R. Grimett, In Comprehensive Heterocyclic Chemistry II; A.R. Katritzky, C.W. Rees, E.F. Scriven, New York: Pergamon, 3 (1996) 77.
[47] F. Meshkani, M. Rezaei, Powder Technol. 196 (2009) 85–88.