One-pot synthesis of 2,4,5-trisubstituted imidazoles catalyzed by dicationic magnetic room temperature ionic liquid

Authors

1 Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.

2 Department of Chemistry, College of Science, Shahid Chamran University, Ahwaz, Iran.

Abstract

Regarding the green chemistry's goals, dicationic magnetic room temperature ionic liquid open up new avenue to introduce an amazing and efficient system for facilitating catalyst recovery in different organic reactions. Ability of this dicationic magnetic room temperature ionic liquid catalyst in the one-pot three-components condensation reaction of benzil, aromatic aldehyde, and ammonium acetatate are also described. Utilization of easy reaction conditions, catalyst with high catalytic activity and good reusability, and simple magnetically work-up, makes this methodology as an interesting option for the synthesis of 2,4,5-trisubstituted imidazoles.

Keywords


[1] S. Hayashi, H. Hamagachi, Chem. Lett., 33 (2004) 1590-1591.
[2] S. Lee, S. Ha, H. Jin, C. You, Y. Koo, J. Appl. Phys., 101 (2007) 09J102-3.
[3] M. Okuno, H. O. Hamaguchi, S. Hayashi, Appl. Phys. Lett., 89 (2006) 132506:1–132506:2.
[4] S.H. Lee, S.H. Ha, S.S. Ha, H.B. Jin, C.Y. You, Y.M. Koo, J. Appl. Phys., 101 (2007) 09J102:1–09J102:3.
[5] S.H. Lee, S.H. Ha, C.Y. You, Y.M. Koo, Korean J. Chem. Eng., 24 (2007) 436–437.
[6] Y. Yoshida, G. Saito, J. Mater. Chem., 16 (2006) 1254–1262.
[7] R.E. Del Sesto, T.M. McCleskey, A.K. Burrell, G.A. Baker, J.D. Thompson, B.L. Scott, J.S. Wilkes, P. Williams, Chem. Commun., 4 (2008) 447–449.
[8] B. Mallick, B. Balke, C. Felser, A.V. Mudring, Angew. Chem. Int. Ed., 47 (2008) 7635–7638.
[9] J. Wang, H. Yao, Y. Nie, X. Zhang, J. Li, J. Mol. Liq., 169 (2012) 152-155.
[10] D.N. Sushma, K. Nitin, M. Siddeswaran, Indian J. Hetero. Chem., 15 (2005) 91-92.
[11] P. Cozzi, G. Carganico, D. Fusar, M. Grossoni, M. Menichincheri, V. Pinciroli, R. Tonani, F. Vaghi, P. Salvati, J. Med. Chem., 36 (1993) 2964-2972.
[12] M. Harfenist, E.F. Soroko, G.M. Mekenzie, J. Med. Chem., 21 (1978) 405-409.
[13] L.C. Patricia, M.G. Christine, B.M. Stephen, J. Agric. Food Chem., 36 (1988) 1076-1079.
[14] H. Miyachi, H. Kiyota, M. Segawa, Chem. Lett., 18 (1998) 2163-2168.
[15] M. Shen, C. Cai, W. Yi, J. Fluorine Chem., 129 (2008) 541-544.
[16] G.V. M. Sharma, Y. Jyothi, P. Sree Lakshmi, Synth. Commun., 36 (2006) 2991-3000.
[17] M.M. Heravi, K. Bakhtiari, H.A. Oskooie, S. Taheri, J. Mol. Catal. A: Chem., 263 (2007) 279-281.
[18] A. Shaabani, A. Rahmati, E. Farhangi, Z. Badri, Catal. Commun., 8 (2007) 1149-1152.
[19] H. Zang, Q. Su, Y. Mo, B.W. Cheng, S. Jun, Ultrason. Sonochem., 17 (2010) 749–751
[20] M. Xia, Y. Lu, J. Mol. Catal. A: Chem., 265 (2007) 205–208
[21] S.A. Siddiqui, U.C. Narkhede, S.S. Palimkar, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Tetrahedron, 61 (2005) 3539–3546
[22] X. Liu, M. Lu, Y. Wang, Chiang Mai J. Sci., 38 (2011) 601-607.
[23] S.D. Jadhave, N.D. Kokare, S.D. Jadhave, J. Hetero. Chem., 45 (2009) 1461-1464.
[24] B.M. Godajdar, A.R. Kiasat, M.M. Hashemi, J. Mol. Liq., 183 (2013) 14-19.
[25] B.M. Godajdar, A.R. Kiasat, M.M. Hashemi, Heterocycles, 87 (2013) 559-570.
[26] Y. Yoshida, G. Saito, J. Mater. Chem., 16 (2006) 1254-1262.
[27] S.D. Sharma, P. Hazarika, D. Konwar, Tetrahedron Lett., 49 (2008) 2216-2220.
[28] R.S. Joshi, P.G. Mandhane, M.U. Shaikh, R.P. Kale, C.H. Gill, Chin. Chem. Lett., 21 (2010) 429-432.
[29] R. Khosropour, Ultrason. Sonochem., 15 (2008) 659-664.
[30] S. Samai, G.C. Nandi, p. Singh, M.S. Singh, Tetrahedron, 65 (2009) 10155-10161.
[31] M.M. Khodaei, K. Bahrami, I. Kavianinia, J. Chin. Chem. Soc., 54 (2007) 829-833.
[32] A. Mohammadi, H. Keshvari, R. Sandaroos, H. Rouhi, J. Chem. Sci., 124 (2012) 717–722.
[33] J.N. Sangshetti, N.D. Kokare, S.A. Kothakar, D.B. Shinde, Mont. Fur. Chem., 139 (2008) 125-127.