Suzuki-Miyaura cross-coupling reaction catalyzed using highly efficient CN-dimeric ortho-palladated complex under microwave irradiation and conventional heating

Document Type: Articles

Authors

1 Pharmaceutical Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.

2 Department of Chemistry, Faculty of Science, Alzahra University, Vanak, Tehran, Iran.

Abstract

Suzuki cross-coupling reaction of different aryl halides with arylboronic acids was successfully carried out in methanol using ortho-palladated complex of 2-methoxyphenethylamine. All substrates afforded the corresponding products in good to high yields in the presence of low amounts of this complex as efficient and active catalyst. Application of microwave irradiation improved the yields of the reactions and reduced the reaction times some extent in comparison with traditional heating conditions.

Keywords


[1] H. Prokopcová, J. Ramírez, E. Fernández, C.O. Kappe, Tetrahedron Lett. 49 (2008) 4831-4835.

[2] E. Tas, A. Kilic, M. Durgun, I. Yilmaz, I. Ozdemir, N. Gurbuz, J. Organomet. Chem. 694 (2009) 446-454.

[3] a) N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457-2483; b) A. Suzuki, J. Organomet. Chem. 576 (1999) 147-168; (c) A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102 (2002) 3757-3778; d) A. Suzuki, J. Organomet. Chem. 653 (2002) 83-90; e) N. Miyaura, Metal-catalyzed cross-coupling reactions, in: de Meijere, A., Diederich, F. (Eds.), Wiley-WCH: Weinheim, Germany, 1 (2004) 41–123; f) S. Ikegami, H. Hamamoto, Chem. Rev. 109 (2009) 583-593.

[4] F. Amoroso, S. Colussi, A. Del Zotto, J. Llorca, A. Trovarelli, Catal. Commun. 12 (2011) 563-567.

[5] H. Neumann, A. Brennführer, M. Beller, Chem. Eur. J. 14 (2008) 3645-3652.

[6] K. Asai, G. Konishi, K. Sumi, S. Kawauchi, Polym. Chem. 1 (2010) 321-325.

[7] C. Torborg, M. Beller, Adv. Synth. Catal. 351 (2009) 3027-3043.

[8] A.R. Siamaki, A.R.S. Khder, V. Abdelsayed, M.S. El-shall, B.F. Gupton, J. Catal. 279 (2011) 1-11.

[9] P. Das, C. Sarmah, A. Tairai, U. Bora, Appl. Organometal. Chem. 25 (2011) 283-288.

[10] D. Srimani, A. Sarkar, Tetrahedron Lett. 49 (2008) 6304-6307.

[11] H. Firouzabadi, N. Iranpoor, A. Ghaderi, M. Ghavami, S. J. Hoseini, Bull. Chem. Soc. Jpn. 84 (2011) 100-109.

[12] D. Zou, H. Cui, L. Qin, J. Li, Y. Wu, Synlett (2011) 349-356.

[13] M. Beller, H. Fischer, W. A. Herrmann, K. Öfele, C. Brossmer, Angew. Chem, Int. Ed. 34 (1995) 1844-1848.

[14] M. Genov, A. Almoln, P. Espinet, Tetrahedron: Asymmetry 18 (2007) 625-627.

[15] K.M. Dawood, Tetrahedron 63 (2007) 9642-9651.

[16] J. Lasri, T.C.O. Mac Leod, A.J.L. Pombeiro, Appl. Catal. A: Gen. 397 (2011) 94-102.

[17] C.O. Kappe, Angew. Chem. Int. Ed. 43 (2004) 6250-6284.

[18] M. Larhed, A. Hallberg, J. Org. Chem. 61 (1996) 9582-9584.

[19] M. Larhed, G. Lindeberg, A. Hallberg, Tetrahedron Lett. 37 (1996) 8219-8222.

[20] N.E. Leadbeater, M. Marco, Org. Lett. 4 (2002) 2973-2976.

[21] R.K. Arvela, N.E. Leadbeater, Org. Lett. 7 (2005) 2101-2104.

[22] N.E. Leadbeater, M. Marco, J. Org. Chem. 68 (2003) 888-892.

[23] R.K. Arvela, N.E. Leadbeater, M.S. Sangi, V.A. Williams, P. Granados, R.S. Singer, J. Org. Chem. 70 (2005) 161-168.

[24] R.K. Arvela, N.E. Leadbeater, T.M. Mack, C.M. Kormos, Tetrahedron Lett. 47 (2006) 217-220.

[25] R.K. Arvela, N.E. Leadbeater, M.J. Collins, Tetrahedron 61 (2005) 9349-9355.

[26] N.E. Leadbeater, V.A. Williams, T.M. Barnard, M. Collins, Org. Process Res. Dev. 10 (2006) 833-837.

[27] F. Chanthavong, N.E. Leadbeater, Tetrahedron Lett. 47 (2005) 1909-1912.

[28] K.B. Avery, W.G. Devine, C.M. Kormos, N.E. Leadbeater, Tetrahedron Lett. 51 (2009) 2851-2853.

[29] N.E. Leadbeater, Chem. Commun. (2005) 2881-2902.

[30] A.R. Hajipour, F. Abrishami, G. Tavakoli, Trans. Met. Chem. 36 (2011) 725-730.

[31] A.R. Hajipour, K. Karami, A. Pirisedigh, Inorg. Chim. Acta, 370 (2011) 531-535.

[32] A.R. Hajipour, K. Karami, A. Pirisedigh, J. Organomet. Chem. 694 (2009) 2548-2554.

[33] A.R. Hajipour, K. Karami, A. Pirisedigh, Appl. Organomet. Chem. 23 (2009) 504-511.

[34] A.R. Hajipour, K. Karami, G. Tavakoli, Appl. Organomet. Chem. 24 (2010) 798-804.

[35] A.R. Hajipour, K. Karami, A. Pirisedigh, Appl. Organomet. Chem. 24 (2010) 454-457.

[36] A.R. Hajipour, K. Karami, G. Tavakoli, A. Pirisedigh, J. Organomet. Chem. 96 (2011) 819-824.

[37] B. Mu, T. Li, J. Li, Y. Wu, J. Organomet. Chem. 693 (2008) 1243-1251.

[38] A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 37 (1999) 3387-3388.

[39] S.E. Denmark, M.H. Ober, Org. Lett. 5 (2003) 1357-1360.

[40] K. Karami, C. Rizzoli, M. Mohamadi Salah, J. Organomet. Chem. 696 (2011) 940-945.

[41] H.J. Lehmler, L.W. Robertson, Chemosphere 45 (2001), 137-143.

[42] A. Kamal, K. Sreekanth, P. P. Kumar, G. Balakishan, M.G. Ramaiah, M. Janaki, S.N.C.V.L. Pushpavalli, P. Ray, M. Pal Bhadra, Eur. J. Med. Chem. 45 (2010) 2173-2181.

[43] Y. Kitamura, A. Sakurai, T. Udzu, T. Maegawa, Y. Monguchi, H. Sajiki, Tetrahedron 63 (2007) 10596-10602.

[44] J.H. Li, Q.M. Zhu, Y.X. Xie, Tetrahedron 62 (2006) 10888-10895.

[45] A.R. Hajipour, I. Mahboobi Dehbane, F. Rafiee, Appl. Organometal. Chem. 26 (2012) 743–747.

[46] F. Durap, M. Rakap, M. Aydemir, S. Özkar, Appl. Catal. A: Gen. 382 (2010) 339-344.