3-Hydroxypropylammonium acetate (HPAA) ionic liquid: An effective acidic media in efficient conversion of anilines into aryl isocyanates

Document Type: Letters

Authors

1 Faculty of Chemistry, Bu-Ali Sina University, 65178, Hamedan, Iran

2 Faculty of Chemistry, Tarbiat Modares University, Tehran, Iran

Abstract

A simple and mild procedure for the conversion of anilines into aryl isocyanates is described using the 3-hydroxypropylammonium acetate (HPAA) ionic liquid as a novel and efficient media has been explored in the synthesis of aryl isocyanates from the reaction of substituted urea with sodium nitrite in a water immiscible solvent. This ionic liquid can be easily recovered and reused for many times without noticeable loss of activity.

Keywords


[1] G. Labbe, Synthesis 6 (1987) 525-531.
[2] (a) H. Ulrich, Chemistry and Technology of Isocyanates, Wiley, New York, 1966. (b) S. Ozaki, Chem. Rev. 72 (1977) 457-469. (c) B.A. Arbuzov, N.N. Zobova, Synthesis 6 (1982) 433-450.
[3] A.M. Tafesh, J. Weiguny, Chem. Rev. 96 (1966) 2035-2052.
[4] R.H. Richter, R.D. Priester, Isocyanates, Organic, in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, New York, Vol. 14, 1995, pp. 902-934.
[5] E.W. Stern, M. Spector, J. Org. Chem. 31 (1966) 596-597.
[6] K.C. Fritsch, D. Klempner, in: G. Allen, J.C. Bevington, (Eds.), Comprehensive Polymer Science, Pergamon, New York, 1989, pp. 413-414.
[7] A.J. Ryan, J.L. Stanford, in: G. Allen, J.C. Bevington, (Eds.), Comprehensive Polymer Science, Pergamon, New York, 1989, pp. 427-428.
[8] R.L. Metcalf, in: J.I. Kroschwitz, M. Howe-Grant, (Eds.), Kirk-Othmer, Encyclopedia of Chemical Technology, Wiley, New York, 1995, pp. 570-572.
[9] T. Kato, K. Suzuki, J. Takahashi, K. Kamishota, J. Pesticide Sci. 9 (1984) 489-495.
[10] V.I. Manov-Yuvenskii, B.K. Nefedov, K.O. Khoshdurdyev, Russ. Chem. Bull. 31 (1982) 1176-1178.
[11] N.N. Melinkov, "Chemistry of Pesticides", Springer Verlag, Berlin, 1971, pp. 183-194.
[12] G.S. Hartley, T.F. West, "Chemicals for Pest Control", Pergamon, New York, 1969, pp. 86-316.
[13] D.K. Georges, D.H. Moore, W.P. Brian, J.S. Gorman, J. Agr. Food Chem. 2 (1954) 356-363.
[14] A. Wurtz, Ann. 71 (1849) 326-342.
[15] S. Ozaki, Chem. Rev. 72 (1972) 457-469.
[16] (a) W. Hentschel, Chem. Ber. 17 (1884) 1284. (b) S. Werner, Annalen. 562 (1949) 75-136. (c) R.J. Slocombe, E.E. Hardy, J.H. Saunder, R.L. Jenkinsm, J. Am. Chem. Soc. 72 (1950) 1888-1889.
[17] (a) K. Kurita, Y. Iwakura, J. Org. Chem. 41 (1976) 2070-2071. (b) K. Kurita, Y. Iwakura, Org. Synth. Coll. 6 (1988) 715-719.
[18] (a) H. Eckert, B. Forster, Angew. Chem. Int. Ed. Engl. 26 (1987) 894-895. (b) L. Cotarca, P. Delogu, A. Nardelli, C.V. Sunji, Synthesis 33 (1996) 553-576.
[19] H.R. Kricheldorf, Angew. Chem. 84 (1972) 107-108.
[20] P. Uriz, M. Serra, P. Salagre, S. Castillon, C. Claver, E. Fernandez, Tetrahedron Lett. 43 (2002) 1673–1676.
[21] H.A. Staab, W. Benz, Angew. Chem. 73 (1961) 657-667.
[22] (a) R. Bonjouklian, R.A. Ruden, J. Org. Chem. 42 (1977) 4095-4103. (b) C. Kaiser, J. Weinstock, Org. Synth. 51 (1971) 48-51.
[23] S. Heyden, G. Wilbert, Chem. Ind. 33 (1967) 1406-1407.
[24] F. A. Daniher, J. Org. Chem. 34 (1969) 2908-2911.
[25] (a) S. Bittner, S. Grinberg, I. Kartoon, Tetrahedron Lett., 15 (1974) 1965-1968. (b) F.A. Daniher, J. Org. Chem. 34 (1969) 2908-2911.
[26] M.O. Lynette, S. Grant, M.G. Richard, Tetrahedron Lett. 45 (2004) 4769-4771.
[27] Y. Takebayashi, K. Sue, S. Yoda, T. Furuya, K. Mae, Chem. Eng. J. 180 (2012) 250-254.
[28] T.W. Leung, B. D. Dombek, J. Chem. Soc. Chem. Commun. 3 (1992) 205-206.
[29] (a) V.L.K. Valli, H. Alper, J. Am. Chem. Soc. 115 (1993) 3778-3779. (b) E. Alessio, G. Mestroni, J. Organomet. Chem. 291 (1985) 117-118. (c) Y. Izumi, Y. Satoh, H. Kondoh, K. Yrabe, J. Mol. Catal. 72 (1992) 37-41. (d) Y. Izumi, Y. Satoh, K. Urabe, Chem. Lett. (1990) 795-796. (e) A.A. Kelkar, D. S. Kolhe, S. Kanagasabapathy, R.V. Chaudhari, Ind. Eng. Chem. Res. 31 (1992) 172. (f) P. Wehman, P.C.J. Kamer, P.W.N.M. Van Leeuwen, Chem. Commun. (1996) 217-218. (g) I. Pri-Bar, J. Schwartz, J. Org. Chem. 60 (1995) 8124-8127. (h) V.L.K. Valli, H. Alper, Organometallics 14 (1995) 80-82. (i) P. Wehman, V.E. Kaasjager, W.G.J. De Lange, F. Hartl, P.C.J. Kamer, P.W.N. M. Van Leeuwen, Organometallics 14 (1995) 3751-3761. (j) F. Bigi, R. Maggi, G. Sartori, Green Chem. 2 (2000) 140-148.
[30] G. C. Bond, D. T. Thompson, Appl. Catal. A: Gen. 302 (2006) 1-4.
[31] (a) F. Ragaini, S. Cenini, A. Fumagalli, C. izzoCrotti, J. Organomet .Chem. 428 (1992) 401-408. (b) F. Ragaini, S. Cenini, F. Demartin, Organometallics 13 (1994) 1178-1189. (c) C.V. Rode, S.P. Gupte, R.V. Chaudhari, C.D. Pirozhkov, A.L. Lapidus, J. Mol. Catal. 91 (1994) 195-206.
[32] R. Ugo, R. Psaro, M. Ptti, P. Nardi, C. Dossi, A. Andreetta, G. Capparella, J. Organomet. Chem. 417 (1991) 211-212.
[33] B. Zhu, R.J. Angelici, J. Am. Chem. Soc. 128 (2006) 14460-14461.
[34] (a) G. Maddinelli, M. Nall, B. Rindone, S. Tollari, J. Mol. Catal. 39 (1987) 71-77. (b) A. Bassoli, B. Rindone, S. Tollari, J. Mol. Catal. 60 (1990) 41-48.
[35] (a) F. Calderazzo, Inorg. Chem. 4 (1965) 293-296. (b) B.D. Dombek, R.J. Angelici, J. Organomet. Chem. 134 (1977) 203-217. (c) S.C. Srivastava, A.K. Shrimal, A. Sricastava, J. Organomet. Chem. 414 (1991) 65-66.
[36] (a) N. Sonoda, Pure Appl. Chem. 65 (1993) 699-706. (b) Y. Yang, S. Liu, Tetrahedron Lett. 40 (1999) 4845-4846. (c) H.S. Kim, Y.J. Kim, H. Lee, S.D. Lee, C.S. Chin, J. Catal. 184 (1999) 526-534.
[37] (a) F. Shi, Y. Deng, H. Yang, T. Sima, Chem. Commun. (2001) 345-346. (b) F. Shi, Y. Deng, Chem. Commun. (2001) 431-432. (c) F. Shi, Y. Deng, J. Catal. 211 (2002) 548-552.
[38] (a) J.E. McCusker, K.A. Abboud, L. McElwee-White, Organometallics 16 (1997) 3863-3866. (b) L. Lee, D. Chen, Y. Lin, Y. Lo, C.H. Lin, G. Lee, Y. Wang, Organometallics 16 (1997) 4636-4644. (c) J.E. McCusker, J. Logan, L. McElwee-White, Organometallics 17 (1998) 4037-4041. (d) J.E. McCusker, A.D. Main, K.S. Johnson, C.A. Grasso, L. McElwee-White, J. Org. Chem. 65 (2000) 5216-5222.
[39] E.V. Vinogradova, B.P. Fors, S.L. Buchwald, J. Am. Chem. Soc. 134 (2012) 11132–11135.
[40] (a) Y. Fu, T. Baba, Y. Ono, J. Catal. 197 (2001) 85-91. (b) R.N. Salvatore, S.I. Shin, A.S. Nagle, K.W. Jung, J. Org. Chem. 66 (2001) 1035-1037. (c) M. Selva, P. Tundo, A. Perosa, Tetrahedron Lett. 43 (2002) 1217-1219.
[41] B. Akhlaghinia, S. Samiei, Turk. J. Chem. 31 (2007) 35-43.
[42] H.J. Knolker, T. Braxmeier, G. Schlechtingen, Angew. Chem. Int. Ed. Engl. 34 (1995) 2497–2500.
[43] J.H. Clark, Catalysis of organic reactions by supported inorganic reagents. New York: VCH; 1994, pp. 12-50.
[44] A. Shariati, S.S. Ashrafmansouri, M. Haji Osbuei, B. Hooshdaran, Korean J. Chem. Eng. 30 (2013) 187-193.
[45] (a) R.A. Sheldon, R.M. Lau, F. Sorgedrager, K. van Rantwijk, R. Seddon, Green Chem. 4 (2002) 147–151. (b) B. Jastorff, R. Stormann, J. Ranke, K. Molter, F. Stock, B. Oberheitmann, W. Hoffmann, J. Hoffmann, M. Nuchter, B. Ondruschka, J. Filser, Green Chem. 5 (2003) 136–142. (c) D.R. MacFarlane, Aust. J. Chem. 57 (2004) 111–112. (d) J.S. Wilkes, Mol. Catal. A: Chem. 214 (2004) 11–17.
[46] H.R. Shaterian, A.R. Oveisi, J. Iran. Chem. Soc. 2 (2011) 545-552.
[47] F. Kurzer, Org. Synth. 4 (1963) 49-51.
[48] (a) R. Sustmann, Tetrahedron Lett. 12 (1971) 2717-2720. (b) R. Sustmann, Tetrahedron Lett. 12 (1971) 2721-2724.
[49] A. Fiksdahl, C. Plug, C. Wentrup, J. Chem. Soc. Perkin Trans. 2 (2000) 1841-1845.
[50] V.U. Gizycki, Angew. Chem. 83 (1971) 406-408.
[51] R.B. Moreno, Ph.D. Thesis, University College London, 2010, 156-158.
[52] Ph. Ruth, Anal. Chem. 38 (1966) 720-721.
[53] B. Wang, Sh. Ke, B. Kishore, X. Xu, Zh. Zou, Zh. Li, Synth. Commun. 42 (2012) 2327-2336.
[54] E.A. Kovaleva, A.V. Lebedev, A.B. Lebedev, S.N. Ovcharuk, V.D. Sheludyakov, O.L. Ustinova, Russ. J. Gen. Chem. 76 (2006) 110-115.
[55] C.Y. Charalambides, S.C. Moratti, Synth. Commun. 37 (2007) 1037-1044.
[56] W. Breitenstein, F. Marki, S. Roggo, I. Wiesenberg, J. Pfeilschifter, P. Furet, E. Beriger, Eur. J. Med. Chem. 29 (1994) 649-65