Modification of silica with 2,4-dinitrophenylhydrazanomethylphenol for monosaccharide productions

Document Type: Articles

Authors

1 Chemistry Department, College of Science, Al-Muthanna University, Iraq

2 Chemistry Department, College of Science, University of Karbala, Iraq

Abstract

2,4-dinitrophenylhydrazanomethylphenol (DNPHMP) was immobilized onto silicate rice husk ash to form a heterogeneous catalyst denoted as RHDNPH. The elemental and EDX analysis of RHDNPH showed the nitrogen is incorporated into silica. The RHDNPH had 154.6 m2g-1 as a specific surface area. The FT-IR clearly showed the appearance of –NH and C=N absorption band at the expected range. The TGA curve shows that the RHDNPH was stable at the temperature of less than 200 °C. Hydrolysis experiments of cellulose were conducted in liquid face reaction at 140 °C, and 150 mg of catalyst mass in 11 h. The maximum hydrolysis of cellulose was 84 % with 100 % selectivity of glucose over the catalyst. The catalyst was simple in its preparation, stable during the cellulose hydrolysis in addition to repeatedly without a significant loss of its catalytic activity.

Keywords


[1] K.B. Olanrewaju, Ph.D. Thesis, University of Iowa, USA, 2012.
[2] N. Andersen, Ph.D. Thesis, BioCentrum-Dtutechnical University of Denmark, 2007.
[3] Y. Sun, J. Cheng, Bioresour. Technnol. 83 (2002) 1–11.
[4] M. Sasaki, Z. Fang, Y. Fukushima, T. Adschiri, K. Arai, Ind. Eng. Chem. Res. 39 (2000) 2883–2890.
[5] M.H. Abood, M.Sc. Thesis, Baghdad University, Iraq (2013).
[6] S. Wald, C.R. Wilke, H.W. Blanch, Biotechnol. Bioeng. 26 (1984) 221-230.
[7] B. Yu, H. Chen, Bioresour. Technol. 101 (2010) 9114-9119.
[8] R.D. Brown, L. Jurasek, (Eds.), Hydrolysis of cellulose: Mechanisms of enzymatic and acid hydrolysis. Advances in Chemistry series, Vol. 181, American Chemical Society, Washington, DC, 1979, pp 181-210.
[9] G. Chen, J. Gao, L. Xu, X. Fu, Y. Yin, S. Wu, Y. Qin Adv. Powder Technol. 23 (2012) 256–263.
[10] K.M. Hello, Ph.D. Thesis, University Sains Malaysia, Malaysia (2011).
[11] F. Adam, K.M. Hello, H. Osman, Appl. Catal. A: Gen. 382 (2010) 115–121.
[12] F. Adam, K.M. Hello, H. Osman, Appl. Catal. A: Gen. 365 (2009) 165–172.
[13] F. Adam, K.M. Hello, S.J. Chai, Chem. Eng. Res. Des. 90 (2012) 633–642.
[14] F. Adam, T. Chew, H. Mannyarasai, J. Appaturi, K.M. Hello, Microporous Mesoporous Mater. 167 (2013) 245-248.
[15] F. Adam, K.M. Hello, T.H. Ali, Appl. Catal. A: Gen. 399 (2011) 42-49.
[16] Ö. Ahmet, A.K. Zafer, T.Z. Gülhan, R. Gilbert, Marmara Pharma. J. 14 (2010) 79–83.
[17] P. Nun, C. Martin, J. Martinez, F. Lamaty, Tetrahedron 67 (2011) 8187–8194.
[18] F. Shirini, M.A. Zolfigol, B. Mallakpour, S.E. Mallakpour, A.R. Hajipourc, I.M. Baltork, Tetrahedron Lett. 43 (2002) 1555–1556.
[19] B.E. Love, E.G. Jones, J. Org. Chem. 64 (1999) 3755-3756.
[20] S. Nursabah, I. Gazi, Turk. J. Chem. 29 (2005) 107-115.
[21] M.C. Rodriguez-Arguelles, M.B. Ferrari, F. Bisceglie, C. Pelizzi, G. Pelosi, S. Pinelli, M. Sassi, J. Inorg. Biochem. 98 (2004) 313-321.
[22] D.K. Das, P. Goswami, S. Sarma, J. Fluoresc. 23(2013) 503-508.
[23] C. Real, M.D. Alcala, J.M Criado, J. Am. Chem. Soc. 79 (1996) 2012–2016.
[24] F. Adam, J.H. Chua, J. Colloid Interface Sci. 280 (2004) 55–61.
[25] F. Adam, A.E. Ahmed, Microporous Mesoporous Mater. 103 (2007) 284–295.
[26] F. Adam, H. Osman, K.M Hello, J. Colloid Interface Sci. 331 (2009)143–147.
[27] A.S. Amarasekara, B. Wiredu, Appl. Catal. A: Gen. 417–416 (2012) 259–262.
[28] C. Breuil, J.N. Saddler, Enzyme Microb. Technol. 7 (1985) 327–332.
[29] G.L. Miller, Anal. Chem. 31 (1959) 426–428.
[30] M. Thommes, Chem. Ing. Tech. 82 (2010) 1059-1073.
[31] T. Soundiressane, S. Selvakumar, S. Ménage, O. Hamelin, M.F. Ontecave, A.P. Singh, J. Mol. Catal. A: Chem. 270 (2007) 132–143.
[32] I. Díaz, F. Mohino, J. Pérez–Pariente, E. Sastre, Appl. Catal. A: Gen. 205 (2001) 19–30.
[33] E.J. Nassar, C.R. Neri, P.S. Cale, O.A. Serra, J. Non-Cryst. Solids 247 (1999) 124–128.