Gas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach

Document Type: Articles

Authors

1 Department of chemistry, Faculty of science, Alzahra University, 19835-389, Vanak, Tehran, Iran.

2 5th floor, Tehran Province Gas Company, No. 701, 15946-53415, Valiasr St, above Valiasr Sq., Tehran, Iran.

3 3rd floor, Gas 6th Building, 15988-66515, Amani Ave., Gharani St., Tehran, Iran.

Abstract

In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of active and inactive forms of γ-CA enzyme active center, and complex between γ-CA and carbon dioxide. The catalytic mechanism involved the nucleophilic attack of cobalt bound hydroxide ion to CO2. In the following, the five coordinate cobalt complex as a transition state is formed and then the produced bicarbonate is displaced by a water molecule and give cobalt bound hydroxide for the next turn of catalysis. The activation energy barrier for this mechanism is about 7.9 kcal/mol.

Keywords


[1] C.T. Supuran, A. Scozzafava, Expert Opin. Ther. Pat. 12 (2002) 217-242.
[2] C.T. Supuran, A. Scozzafava, Curr. Med. Chem. Imm. Endoc. Metab. Agents 1 (2001) 61-97.
[3] C.T. Supuran, A. Scozzafava, Expert Opin. Ther. Pat. 10 (2000) 575-600.
[4] S.A. Zimmerman, J.G. Ferry, Curr. Pharm. Des. 14 (2008) 716-721.
[5] C.T. Supuran, Bioorg. Med. Chem. Lett. 20 (2010) 3467-3474.
[6] A.J. Esbaugh, B.L. Tufts, Respir. Physiol. Neurobiol. 154 (2006) 185-198.
[7] S. Lindskog, Biochim. Biophys. Acta 39 (1960) 218-226.
[8] P.O. Nyman, Biochim. Biophys. Acta 52 (1961) 1-12.
[9] S. Lindskog, B.G. Malmstrom, J. Biol. Chem. 237 (1962) 1129-1124.
[10] G. Laurent, M. Charrel, F. Luccioni, M.F. Autran, Y. Derrien, Bull. Soc. Chim. Biol. 47 (1965) 1101-1124.
[11] G. Laurent, C. Marrioq, D. Nahon, M. Charrel, Y. Derrien, Compt. Rend. Soc. Biol. 156 (1962) 1456-1461.
[12] E.E. Rickli, S.A.S. Ghazanfar, B.H. Gibbons, J.T. Edsall, J. Biol. Chem. 239 (1964) 1065-1078.
[13] J.C. Kernohan, Biochim. Biophys. Acta 81 (1964) 346-356.
[14] J.C. Kernohan, Biochim. Biophys. Acta 96 (1965) 304-317.
[15] B. Tilander, B. Strandberg, K. Fridborg, J. Mol. Biol. 12 (1965) 740-760.
[16] J.E. Coleman, Biochemistry 4 (1965) 2644-2655.
[17] T.A. Duff, J.E. Coleman, Biochemistry 5 (1966) 2009-2019.
[18] J.B. Foresman, A. Frisch, Exploring chemistry with electronic structure methods, Gaussian Inc. Pittsburg, PA., 1996, pp. 3-9.
[19] R.G. Parr, W. Yang, Density-functional theory of atoms and molecules, Oxford Univ. Press, 1989.
[20] S.A. Zimmerman, J.G. Ferry, C. T. Supuran, Curr. Top. Med. Chem. 7 (2007) 901-908.
[21] S. Lindskog, L.E. Henderson, K.K. Kannan, A. Liljas, P.O. Nyman, B. Trandberg, Carbonic anhydrase in the enzymes. Academic press, New York, 1971, pp. 587-665.
[22] Y. Pocker, S. Sarkanen, Adv. Enzymol. Relat. Areas Mol. Biol. 47 (1978) 149-274.
[23] W.S. Sly, P.Y. Hu, Annu. Rev. Biochem. 64 (1995) 375-401.
[24] C.T. Supuran, A. Scozzafava, A. Cassini, Med. Res. Rev. 23 (2003) 146-189.
[25] S. Pastorekova, S. Parkkila, J. Pastorek, C.T. Supuran, J. Enzyme Inhib. Med. Chem. 19 (2004) 199-229.
[26] C.T. Supuran, Rev. Roum. Chim. 37 (1992) 411-421.