Tetramethylguanidiniumtriflate catalyzed Henry reaction of isatins: An efficient synthesis of 3-hydroxy-3-(nitromethyl)indolin-2-one derivatives and their anti-diabetic activity

Document Type: Letters

Authors

1 Department of Chemistry, Izeh Branch, Islamic Azad University, Izeh, Iran

2 Department of Biology, Izeh Branch, Islamic Azad University, Izeh, Iran

Abstract

The ionic liquid, N,N,N,N-tetramethylguanidiniumtriflate (TMGTf) was found to be an efficient catalyst solvent for Henry reaction between nitromethane and isatin derivatives to provide 3-hydroxy-3-(nitromethyl)indolin-2-one under mild conditions. The ionic liquid amenable to successive recycling without appreciable decrease in activity. Synthesized compounds have been screened for their anti-diabetic activity.(The ionic liquid, N,N,N,N-tetramethylguanidiniumtriflate (TMGTf) was found to be an efficient catalyst solvent for Henry reaction between nitromethane and isatin derivatives to provide 3-hydroxy-3-(nitromethyl)indolin-2-one under mild conditions. The ionic liquid amenable to successive recycling without appreciable decrease in activity. Synthesized compounds have been screened for their anti-diabetic activity, i try to submit paper)

Keywords


[1] (a) T. Ratan Bal, B. Anand, P. Yogeeswari, D.H. Sriram, Bioorg. Med. Chem. Lett. 15 (2005) 4451–4455. (b) T. Jiang, K.L. Kuhen, K. Wolff, H. Yin, K. Ieza, J. Caldwell, B. Bursulaya, T.Tuntland, K. Zhang, D. Karanewsky, Y. He, Bioorg. Med. Chem. Lett. 16 (2006) 2109–2112.
[2] R. Tripathy, A. Reiboldt, P.A. Messina, M. Iqbal, J. Singh, E.R. Bacon, S. Angeles, Sh.X. Yang, M.S. Albom, C. Robinson, H. Chang, B.A. Ruggeri, J.P. Mallamo, Bioorg. Med. Chem. Lett. 16 (2006) 2158–2162.
[3] (a) A. Cane, M.C. Tournaire, D. Barritault, M. Crumeyrolle-Arias, Biochem. Biophys. Res. Commun. 276 (2000) 379–384. (b) V.C. Silveira, J.S. Luz, C.C. Oliveira, I. Graziani, M.R. Ciriolo, A.M. C. Ferreira, J. Inorg. Biochem. 102 (2008) 1090–1103.
[4] (a) A. Amal Raj, R. Raghunathan, M.R. Sridevikumaria, N. Raman, Bioorg. Med. Chem. 11 (2003) 407–419. (b) M.C. Rodriguez-Arguelles, S. Mosquera-Vazaquez, P. Touron-Touceda, J. Sanmartin-Matalobos, A.M. Garcia-Deibe, M. Belicchi-Ferraris, G. Pelosi, C. Pelizzi, F.J. Zani, J. Inorg. Biochem. 101 (2007) 138–147.
[5] L. Maskell, E.A. Blanche, M.A. Colucci, J.L. Whatmore, Ch. Moody J. Bioorg. Med. Chem. Lett. 17 (2007) 1575–1578.
[6] (a) R. Shimazawa, M. Kuriyama, R. Shirai, R. Bioorg. Med. Chem. Lett. 18 (2008) 3350–3353.
(b) A.H. Abadi, S.M. Abou-Seri, D.E. Abdel-Rahman, Ch. Klein, O. Lozach, L. Meijer, Eur. J. Med. Chem. 41(2006) 296–305.
[7] (a) Y. Yamada, M. Kitajima, N. Kogure, H. Takayama, Tetrahedron 64 (2008) 7690–7694.
(b) N. Kogure, H. Kobayashi, N. Ishii, M. Kitajima, S. Wongseripipatana, H. Takayama, Tetrahedron Lett. 49 (2008) 3638–3642. (c) Z. Zhang, Y. T. Di, Y. T. Wang, S. Z.  Mu, X. Fang, Y. Zhang, C. J. Tan, Q. Zhang, X. H.Yan, J. Guo, Tetrahedron 65 (2009) 4551–4556. (d) T.S. Kam, Y.M. Choo, Tetrahedron 56 (2000) 6143–6150. (e) Y. Wu, M. Kitajima, N. Kogure, R. Zhang, H. Takayama, Tetrahedron Lett. 49 (2008) 5935–5938.
[8] W.J. Skiles, D. McNeil, R.B. Labroo, E.A. Cohen, J. Org. Chem. 64 (1999) 1369-1371.
[9] (a) J.I. Jimenez, U. Huber, R.E. Moore, G.M.L. Patterson, J. Nat. Prod. 62 (1999) 569-572. (b) H.B. Rasmussen, J.K. MacLeod, J. Nat. Prod. 60 (1997) 1152-1154. (c) T. Tokunaga, W.E. Hume, T. Umezome, K. Okazaki, Y. Ueki, K. Kumagai, S. Hourai, J. Nagamine, H. Seki, M. Taiji, H. Noguchi, R. Nagata, J. Med. Chem. 44 (2001) 4641-4649. (d) J. Nagamine, R. Nagata, H. Seki, N. Nomura-Akimaru, Y. Ueki, K. Kumagai, M. Taiji, H. Noguchi, J. Endocrinol. 171 (2001) 481-489.
[10] (a) F. Imre, N. Miklo's, S. Aron, B. Ga'bor, T. La'szlo', Tetrahedron 57 (2001) 1129-1137. (b) D.R. Long, C.G. Richards, M.S.F. Ross, J. Hetrocycl. Chem. 15 (1978) 633-677. (c) F.A. Luzziao, Tetrahedron 57 (2001) 915-1138.
[11] L. Liu, S. Zhang, F. Xue, G. Lou, H. Zhang, S. Ma, W. Duan, Chem. Eur. J. 17 (2011) 1791-1795.
[12] G. Chen, Y. Wang, H. He, S. Gao, X. Yang, X. Hao, Heterocycles 68 (2006).2327–2333.
[13] W.R. Conn, H.G. Lindwall, J. Am. Chem. Soc. 58 (1936) 1236–1239.
[14] G. Chen, X-J. Hao, Q-Y. Sun, J. Ding, Chemical Papers 64 (2010) 673-677.
[15] H.M. Meshram, Palakuri Ramesh, A. Sanjeeva Kumar, A. Swetha, Tetrahedron Lett. 52 (2011) 5862–5864.
[16] H.M. Meshram, B.P. Thakur, M.B. Bejjam, V.M. Bangade, Green Chem. Lett. & Rev. 6 (2013) 19-43.
[17] M.N. Elinson, A.I. Ilovaisky, V.M.  Merkulova, F. Barba, B. Batanero, B. Tetrahedron 64 (2008) 5915–5919.
[18] (a) P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis; Wiley-VCH Verlag: Stuttgart, Germany, 2002. (b) M. Fremantle, Chem. Eng. News 76 (1998) 32-37.
[19] N.M.M. Mateus, L.C. Branco, N.M.T. Lourenco, C.A.M. Afonso, Green Chem. 5 (2003) 347–352.
[20] (a) K. Rad-Moghadam, L. Youseftabar-Miri, J. Florin. Chem. 135 (2012) 213-219. (b) H. Hosseinjani-Pirdehi, K. Rad-Moghadam, L. Youseftabar-Miri, Tetrahedron 70 (2014) 1780-1785. (c) K. Rad-Moghadam, L. Youseftabar-Miri, Arkivoc XI (2011) 43-50. (d) K. Rad-Moghadam, L. Youseftabar-Miri, Tetrahedron 67 (2011) 5693-5699
[21] E. Hosseini, K. Karimzadeh, M. Vessal, M. Rafieirad, HealthMED. J. 612 (2012) 4253-4257.
[22] S. Lenzen, Diabetologia 51 (2008) 216-226.