Kaolin-SO3H as an efficient catalyst for one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles

Document Type: Articles

Authors

Department of Chemistry, College of Science, Yazd University, Yazd, P.O. Box 89195-741, Iran.

Abstract

Kaolin-SO3H as a new solid acid is prepared via reaction of kaolin and chlorosulfonic acid. This natural based catalyst is very inexpensive and easy available. Imidazoles are an important class of heterocycles being the core fragment of different natural products and biological systems such as anti-allergic, anti-inflammatory, analgesic, antifungal, antimycotic, antibiotic, antiulcerative, antibacterial, antitumor and inhibitors of the p38 MAP kinase. A simple, highly versatile and efficient synthesis of 1,2,4,5-tetrasubstituted imidazoles is achieved using Kaolin-SO3H as a catalyst at moderate temperature under solvent free condition. The key advantages of this process are high yields with simple work-up using easy available inexpensive natural based catalyst.

Keywords


[1] I. Ugi, Pure Appl. Chem. 73 (2001)187-191.
[2] J.G. Lambardino, E.H. Wiseman, J. Med. Chem. 17 (1974) 1182-1188.
[3] M. Misono, Chem. Commun. (2001) 1141-1152.
[4] J.W. Black, G.J. Durant, J.C. Emmett, C.R. Ganellin, Nature 248 (1974) 65-67.
[5] U. Ucucu, N.G. Karaburun, I. Iskdag, Farmaco. 56 (2001) 285-290.
[6] J.A. Murry, Drug Discov. Dev. 6 (2003) 945-965.
[7] S.E. de Laszlo, C. Hacker, B. Li, D. Kim, M. MacCoss, N. Mantlo, J.V. Pivnichny, L. Colwell, G.E. Koch, M.A. Cascieri, W.K. Hagmann, Bioorg. Med. Chem. Lett. 9 (1999) 641-646.
[8] P.A. Eyers, M. Craxton, N. Morrice, P. Cohen, M. Goedert, Chem. Biol. 5 (1998) 321-328.
[9] M.J. Newman, J.C. Rodarte, K.D. Benbatoul, S.J. Romano, C. Zhang, S. Krane, E.J. Moran, R.T. Uyeda, R. Dixon, E.S. Guns, L.D. Mayer, Cancer Res. 60 (2000) 2964-2972.
[10] L. Wang, K.W. Woods, Q. Li, K.J. Barr, R.W. McCroskey, S.M. Hannick, L. Gherke, R.B. Credo, Y. Hui, K. Marsh, R. Warner, J.Y. Lee, N. Zielinski-Mozng, D. Frost, S.H. Rosenberg, H.L. Sham, J. Med. Chem. 45 (2002) 1697-1711.
[11] S. Balalaie, A. Arabanian, Green Chem. 2 (2002) 272-274.
[12] M.M. Heravi, F. Derikvand, F.F. Bamoharram, J. Mol. Catal. A: Chem. 263 (2007) 112-114.
[13] B. Sadeghi, B.F. Mirjalili, M.M. Hashemi, Tetrahedron Lett. 49 (2008) 2575-2577.
[14] A.R. Karimi, Z. Alimohammadi, J. Azizian, A.A. Mohammadi, M.R. Mohammadizadeh, Catal. Commun. 7 (2006) 728-732.
[15] S. Kantevari, S.V.N. Vuppalapati, D.O. Biradar, L. Nagarapu, J. Mol. Catal. A: Chem. 266 (2007) 109-113.
[16] M. Kidwai, P. Mothsra, V. Bansal, R.K. Somvanshi, A.S. Ethayathulla, S. Dey, T.P. Singh, J. Mol. Catal. A: Chem. 265 (2007) 177-182.
[17] L. Nagarapu, S. Apuri, S. Kantevari, J. Mol. Catal. A: Chem. 266 (2007)104-108.
[18] S.D. Sharma, P. Hazarika, D. Konwar, Tetrahedron Lett. 49 (2008) 2216-2619.
[19] G.V. Sharma, Y. Jyothi, P.S. Lakshmi, Synth. Commun. 36 (2006) 2991-3000.
[20] S.N .Murthy, B. Madhav, Y.V.D. Nageswar, Tetrahedron Lett. 51 (2010) 5252-5257.
[21] X.C. Wang, H.P. Gong, Z.J. Quan, L. Li, H.L. Ye, Chinese Chem. Lett. 20 (2009) 44-47.
[22] K. Niknam, A. Deris, F. Naeimi, F. Majleci, Tetrahedron Lett. 52 (2011) 4243-4246.
[23]     S.A. Siddiqui, U.C. Narkhede, S.S. Palimkar, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Tetrahedron 61 (2005) 3539-3546.
[24] G.M. Ziarani, A. Badiei, N. Lashgari, Z, Farahani, J. Saudi Chem. Soc. Article in press, (2013).
[25] R. Consonni, P.D. Croce, R. Ferraccioli, C.L. Rosa, J. Chem. Res. 7 (1991) 188-190.
[26] I. Lantos, W.Y. Zhang, X. Shui, D.S. Eggleston, J. Org. Chem. 58 (1993) 7092-7095.
[27] S. Balalaie, M.M. Hashemi, M. Akhbari, Tetrahedron Lett. 44 (2003) 1709-1711.
[28] B.F. Mirjalili, A. Mirhoseini, J. Chem. Sci. 125 (2013) 1481-1486.
[29] M.A. Amrollahi, B.F. Mirjalili, H. Emtiazi, J. Chem. Sci. 125 (2013) 561-566.
[30] B.F. Mirjalili, A. Bamoniri, M. Rahimi Kazerouni, Chem. Heterocycl. Compd. 50 (2014) 35-40.
[31] D. Biswanath, J. Kashanna, R.A. Kumar, P. Jangili, Monatsh. Chem. 144 (2013) 223-226.