|
Waghmare, A., Patil, T., Kadam, K., Pandit, S. (2015). SFHS: Reusable catalyst for the synthesis of polyhydroquinoline derivatives and its molecular docking studies against tyrosine protein kinase. Iranian Journal of Catalysis, 5(1), 1-8.Amit Shivajirao Waghmare; Tushar Patil; Kailash Kadam; Shivaji Sandu Pandit. "SFHS: Reusable catalyst for the synthesis of polyhydroquinoline derivatives and its molecular docking studies against tyrosine protein kinase". Iranian Journal of Catalysis, 5, 1, 2015, 1-8.Waghmare, A., Patil, T., Kadam, K., Pandit, S. (2015). 'SFHS: Reusable catalyst for the synthesis of polyhydroquinoline derivatives and its molecular docking studies against tyrosine protein kinase', Iranian Journal of Catalysis, 5(1), pp. 1-8.Waghmare, A., Patil, T., Kadam, K., Pandit, S. SFHS: Reusable catalyst for the synthesis of polyhydroquinoline derivatives and its molecular docking studies against tyrosine protein kinase. Iranian Journal of Catalysis, 2015; 5(1): 1-8.
SFHS: Reusable catalyst for the synthesis of polyhydroquinoline derivatives and its molecular docking studies against tyrosine protein kinase
Article 1, Volume 5, Issue 1, Winter 2015, Page 1-8
PDF (897.99 K)
Document Type: Articles
Authors
Amit Shivajirao Waghmare
1; Tushar Patil2; Kailash Kadam3; Shivaji Sandu Pandit3
1Department of Chemistry, PVP College, Pravaranagar, Tal. Rahata-413 713
2Department of Biotechnology,PVP College, Pravaranagar, Tal.Rahata-413 713
3Department of Chemistry, PVP College, Pravaranagar, Tal.Rahata-413 713
Abstract
An efficient synthesis of polyhydroquinoline derivatives is achieved via Hantzsch condensation reaction between aldehydes, dimedone, ethyl acetoacetate and ammonium acetate in the presence of catalytic amount of SFHS in ethanol. This method gives remarkable advantages such as shorter reaction time, simple workup procedure and good to excellent yields. Furthermore the catalyst can be recovered conveniently and reused efficiently. To analyze potential anticancer activity, synthesized derivatives were docked to tyrosine protein kinase (1YJ) against 4ST and PTR binding sites.
Keywords
Polyhydroquinoline derivatives; Multicomponent reaction; Silica supported ferric hydrogen sulphate; Molecular docking
References
[1] (a) A. Distilo, S. Visentin, C. Clara, A.M. Gasco, G. Ermondi, Gasco, J. Med. Chem. 41 (1998) 5393-5401. (b) Y. Sawada, H. Kayakiri, Y. Abe, T. Mizutani, N. Inamura, M. Asano, C. Hatori, I. Arsmori, T. Oku, H. Tanaka, J. Med. Chem. 47 (2004) 2853-2863. (c) R. Shan, C. Velazquez, E.E. Knaus, J. Med. Chem. 47 (2004) 254-261. (d) M. Suarez, Y. Verdecia, B. Illescas, Z. Martinez-Alvarez, A. Alvarez, E. Ochoa, C. Seoane, N. Kayali, N. Martin, Tetrahedron. 59 (2003) 9179-9186.
[2] (a) T. Godfraid, R. Miller, M. Wibo, Pharmacol. Rev. 38 (1986) 321-416. (b) A. Sausins, G. Duburs, Heterocycles 27 (1988) 269-289.
[3] R. Mannhold, B. Jablonka, W. Voigdt, K. Schoenafinger, K. Schravan, Eur. J. Med. Chem. 27 (1992) 229-235.
[4] A. Kumar, S. Sharma, V.D. Tripathi, R.A. Maurya, S.P. Shrivastava, G. Bhatia, A.K. Tamrakar, A.K. Srivastava, Bioorg. Med. Chem. 18 (2010) 4138-4148.
[5] (a) G. Grun, A. Fleckenstein, A. Forsch. Drug Res. 22 (1972) 334-344.
(b) F. Bossert, H. Meyer, E. Wehinger, Angew. Chem. 93 (1981) 755-763. (c) R.A. Janis, D.J. Triggle, J. Med. Chem. 26 (1983) 775-785.
[6] Y.M. Chang, H.J. Kung, C.P. Evans, Neoplasia. 9 (2007) 90-100.
[7] (a) B. Love, K.M. Snader, J. Org. Chem. 30 (1965) 1914-1916. (b) M. Suarez, E. Ochoa, Y. Verdecia, B. Pita, L. Moran, N. Martin, M. Quinteiro, C. Seoane, J. Soto, H. Novoa, N. Blaton, O.M. Peters, Tetrahedron. 55 (1999) 875-884.
[8] (a) S. Ko, M.N.V. Sastry, C. Lin, C.F. Yao, Tetrahedron Lett. 46 (2005) 5771-5774. (b) F.M. Moghaddam, H. Saeidian, Z. Mirjafary, A. Sadeghi, J. Iran. Chem. Soc. 6 (2009) 317-324.
[9] M. Maheswaara, V. Siddaiah, G.L.V. Damu, C.V. Rao, Arkivoc. ii (2006) 201-206.
[10] G. Sabitha, G.S.K.K. Reddy, C.S. Reddy, J.S. Yadav, Tetrahedron Lett. 44 (2003) 4129-4131.
[11] S.R. Cherkupally, R. Mekala, Chem. Pharm. Bull. 56 (2008) 1002-1004.
[12] A. Kumar, R. Maurya, Tetrahedron Lett. 48 (2007) 3887-3890.
[13] S. Ko, C.F. Yao, Tetrahedron. 62 (2006) 7293-7299.
[14] C.S. Reddy, M. Raghu, Ind. J. Chem. 47B (2008) 1578-1582.
[15] N.N. Karade, V.H. Budhewar, S.V. Shinde, W.N. Jadhav, Lett. Org. Chem. 4 (2007) 16-24.
[16] L.S. Gadekar, S.S. Katkar, S.R. Mane, B.R. Arbad, M.K. Lande, Bull. Korean Chem. Soc. 30 (2009) 2532-2534.
[17] (a) L.M. Wang, J. Sheng, L. Zhang, J.W. Han, Z.Y. Fan, H. Tian, C.T. Qian, Tetrahedron. 61 (2005) 1539-1543. (b) J.L. Donelson, R.A. Gibbs, S.K. De, J. Mol. Cat. A: Chem. 256 (2006) 309-311.
[18] A.R. Supale, G.S. Gokavi, Open Catal. J. 2 (2009) 61-65.
[19] G. Song, B. Wang, X. Wu, Y. Kang, L. Yang, Synth. Commun. 35 (2005) 2875-2880.
[20] J.P. Nirmal, P.V. Dadhaniya, M.P. Patel, R.G. Patel, Ind. J. Chem. 49B (2010) 587-592.
[21] (a) M.M. Heravi, K. Bakhtiari, N.M. Javedi, F.F. Bamoharram, M. Saeedi, H.A. Oskooie, J. Mol. Cat. A: Chem. 264 (2007) 50-52. (b) M. M. Heravi, K. Bakhtiari, V. Zadsirjan, M. Saeedi, F.F. Bamoharram, Iran J. Org. Chem. 2 (2010) 298-302.
[22] E. Mosaddegh, A. Hassankhani, Bull. Chem. Soc. Ethiop. 26 (2012) 461-465.
[23] A. Kumar, R.A. Maurya, Tetrahedron 63 (2007) 1946-1952.
[24] (a) L. Saikia, D. Dutta, D.K. Dutta, Catal. Commun. 19 (2012) 1-4. (b) S.M. Vahdat, F. Chekin, M. Hatami, M. Khavarpour, S. Baghery, Z. Roshan-Kouhi, Chin. J. Catal. 34 (2013) 758-763. (c) S.B. Apkal, K.F. Shelke, B.B. Shingaten, M. S. Shingare, Tetrahedron Lett. 50 (2009) 1754-1756.
[25] P. Salehi, M.M. Khodaei, M.A. Zolfigol, S. Zeinoldini, Synth. Commun. 33 (2003) 1367-1373.
[26] H. Eshghi, M. Rahimizadeh, S. Saberi, Catal. Commun. 9 (2008) 2460-2466.
[27] H.R. Shaterian, H. Yarahmadi, M. Ghashang, Arkivoc xvi (2007) 298-313.
[28] H.R. Shaterian, M. Ghashang, J. Braz. Chem. Soc. 19 (2008) 1053-1058.
[29] (a) H. Eshghi, J. Chin. Chem. Soc. 53 (2006) 987-990. (b) H. Eshghi, M. Bakavoli, H. Moradi, Chin. Chem. Lett. 20 (2009) 663-667.
StatisticsArticle View: 932PDF Download: 1,138