|
Mobinikhaledi, A., Khosravi, K., Kazemi, S. (2015). An effective and mild oxidative aromatization of isoxazolines and 2-pyrazolines by trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxalane promoted by ammonium iodide in water/MeCN. Iranian Journal of Catalysis, 5(2), 155-160.Akbar Mobinikhaledi; Kaveh Khosravi; Samira Kazemi. "An effective and mild oxidative aromatization of isoxazolines and 2-pyrazolines by trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxalane promoted by ammonium iodide in water/MeCN". Iranian Journal of Catalysis, 5, 2, 2015, 155-160.Mobinikhaledi, A., Khosravi, K., Kazemi, S. (2015). 'An effective and mild oxidative aromatization of isoxazolines and 2-pyrazolines by trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxalane promoted by ammonium iodide in water/MeCN', Iranian Journal of Catalysis, 5(2), pp. 155-160.Mobinikhaledi, A., Khosravi, K., Kazemi, S. An effective and mild oxidative aromatization of isoxazolines and 2-pyrazolines by trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxalane promoted by ammonium iodide in water/MeCN. Iranian Journal of Catalysis, 2015; 5(2): 155-160.
An effective and mild oxidative aromatization of isoxazolines and 2-pyrazolines by trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxalane promoted by ammonium iodide in water/MeCN
Article 8, Volume 5, Issue 2, Spring 2015, Page 155-160
PDF (849.01 K)
Document Type: Articles
Authors
Akbar Mobinikhaledi; Kaveh Khosravi
; Samira Kazemi
Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
Abstract
Pyrazoles and isoxazoles are well-known important heterocyclic compounds that due to their participation in the structure of many drugs are very important. Pyrazoles and isoxzaloes can be prepared by oxidation of pyrazolines and isoxazolines respectively. In this work, trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxalane (DHPDMDO)/NH4I has been used as a new, powerful, nearly green, effective and inexpensive oxidant for oxidative aromatization of isoxazolines and 2-pyrazolines to corresponding isoxazoles and 2-pyrazoles in the presence of catalytic amount of acetic acid at room temperature in water/MeCN within short reaction time. All products obtained in high yields and good purity by aqueous work-up condition. More complex purification methods is not necessary in this methodology.
Keywords
Trans-3; 5-dihydroperoxy-3; 5-dimethyl-1; 2-dioxolane; Pyrazoles; Isoxazoles
References
[1] T.L. Gilchrist, (1998) in Heterocyclic Chemistry, 3rd ed.; Addison Wesley Longman: Edinburgh Gate, 1997.
[2] D. Lednicer, (1998) Strategies for Organic Drugs Synthesis and Design, Wiley & Sons, New York.
[3] Y. Li, H.Q. Zhang, J. Liu, X.P. Yang, Z. J. Liu, J. Agric. Food. Chem. 54 (2006) 3636-3640.
[4] M.A. Raslan, R.M. Abd El-Aal, M.E. Hassan, N.A. Ahmed, K.U. Sadek, J. Chin. Chem. Soc. 48 (2001) 91-99.
[5] G.M. Garvin, J.L. Jackson, J.M. McQuiston, M.J. Ricks, T.D. Thibault, J.A. Turner, J.C. VanHeertum, M.R. Weimer, Pest. Manage. Sci. 58 (2002) 1175-1186.
[6] N. Nakamichi, Y. Kawashita, M. Hayashi, Org. Lett. 4 (2002) 3955-3957.
[7] N. Nakamichi, Y. Kawashita, M. Hayashi, Synthesis (2004) 1015-120.
[8] M. Hayashi, Y. Kawashita, Lett. Org. Chem. 3 (2006) 571-578.
[9] Y. Kawashita, C. Ueba, M. Hayashi, Tetrahedron. Lett. 47 (2006) 4231-4233.
[10] Y. Kawashita, N. Nakamichi, H. Kawabata, M. Hayashi, Org. Lett. 5 (2003) 3713-3715.
[11] J.N. Shah, C.K. Shah, J. Org. Chem. 43 (1978) 1266-1267.
[12] W.A.F. Goldstone, R.O.C. Norman, J. Chem. Soc. Chem. Commun. (1966) 1537-1538.
[13] K. Auwers, P. Heimke, Liebigs. Ann. 458 (1927) 186-187.
[14] L.I. Smith, K.L. Howard, J. Am. Chem. Soc. 65 (1943) 156-159.
[15] N.K. Kochetkov, S.D. Sokolov, in Advances in Heterocyclic Chemistry, Academic Press, New York, 1965, p. 420.
[16] R.P. Dodwadmath, T.S. Wheeler, Proc. Ind. Acad. Sci. 2A (1935) 438-451.
[17] S.P. Singh, D. Kumar, O. Prakash, R.P. Kapoor, Synth. Commun. 27 (1997) 2683-2689.
[18] G.S. Abitha, G.S.K. Kumar Reddy, Ch.S. Reddy,
N. Fatima, J. S. Yadav, Synthesis (2003) 1267-1270.
[19] C.J. Easton, G.A. Heath, C. Merricc, M. Hughes,
J. Chem. Soc. Perkin Trans. 1 (2001) 1168-1174.
[20] A.H. Blatt, J. Am. Chem. Soc. 71 (1949) 1856-1861.
[21] D. Simoni, M. Robert, F.P. Invidiata, R. Rondanin,
C. Malagutti, A. Mazzali, M. Ross, S. Grimaudo,
F. Capone, L. Dusoncher, J. Med. Chem. 44 (2001) 2308-2318.
[22] C.P. Chuang, M.C. Jiang, Tetrahedron 45 (1999) 11229-11236.
[23] R.K. Chang, K. Kim, Tetrahedron. Lett. 41 (2000) 8499-8503.
[24] M. Schnürch, R. Flasik, A.F. Khan, M. Spina, M.D. Mihovilovic, P. Stanetty, Eur. J. Org. Chem. (2006) 3283-3307.
[25] L. Bianchi, C. Dellerba, F. Grasparrini, M. Novi, C. Tavani, Arkivoc xi (2002) 142-158.
[26] (a) B. Das, B. Veeranjaneyulu, M. Krishnaiah, J. Mol. Catal. A: Chem. 284 (2008) 116-119. (b) A. Bunge, H.J. Hamann, J. Liebscher, Tetrahedron. Lett. 50 (2009) 524-526. (c) A. Bunge, H.J. Hamann, E. McCalmont, J. Liebscher, Tetrahedron Lett. 50 (2009) 4629-4632. (d) B. Das, M. Krishnaiah, B. Veeranjaneyulu, B. Ravikanth, Tetrahedron Lett. 48 (2007) 6286-6289. (e) K. Zmitek, M. Zupan, S. Stavber, J. Iskra, J. Org. Chem. 72 (2007) 6534-6540 (f) K. Zmitek, M. Zupan, S. Stavber, J. Iskra, Org. Lett. 8 (2006) 2491-2494. (g) Y. Li, H.D. Hao, Q. Zhang, Y. Wu, Org. Lett. 11 (2009) 1615-1618. (h) P. Ghorai, P.H. Dussault, Org. Lett. 10 (2008) 4577-4579.
[27] (a) K. khosravi, A. Mobinikhaledi, S. Kazemi,
D. Azarifar, P. Rahmani, Iran. J. Catal. 4 (2014) 25-31. (b) D. Azarifar, Z. Najminejad, K. Khosravi, J. Iran. Chem. Soc. 10 (2013) 979-983. (c) D. Azarifar,
Z. Najminejad, K. Khosravi, Synth. Commun. 43 (2013) 826-836. (d) D. Azarifar, K. Khosravi, J. Iran. Chem. Soc. 8 (2011) 1006-1013. (e) D. Azarifar, K. Khosravi, Z. Najminejad, K. Soleimani, J. Iran. Chem. Soc.
9 (2012) 321-326. (f) D. Azarifar, K. Khosravi, Synlett (2010) 2755-2758. (g) D. Azarifar, K. Khosravi,
F. Soleimanei, Synthesis (2009) 2553-2556.
[28] L. Chai, Y. Zhao, Q. Sheng, Z.Q. Liu, Tetrahedron Lett. 47 (2006) 9283-9285.
[29] M.A. Zolfigol, D. Azarifar, S. Mallakpour, I. Mohammadpoor-Baltork, A. Forghaniha, B. Maleki, M. Abdollahi-Alibeik, Tetrahedron Lett. 47 (2006) 833-836.
[30] B. Han, Zh. Liu, Q. Liu, L. Yang, Z.L. Liu, W. Yu, Tetrahedron 62 (2006) 2492-2496.
[31] R. Ghorbani-Vaghei, D. Azarifar, B. Maleki, Bull. Korean. Chem. Soc. 25 (2004) 953-954.
[32] D. Azarifar, M.A. Zolfigol, B. Maleki, Bull. Korean. Chem. Soc. 25 (2004) 23-24.
[33] D. Azarifar, B. Maleki, M. Setayeshnazar, Heterocycles 75 (2008) 669-6675.
[34] H. Adibi, A.R. Hajipour, H. Jafari, Chem. Heterocycl. Compd. 44 (2008) 802-806.
[35] R. Ghorbani-Vaghei, D. Azarifar, A. Khazaei, B. Maleki, Phosphorus, Sulfur Silicon Relat. Elem. 179 (2004) 1877-1881.
[36] D. Azarifar, E. Nadimi, M. M. Ghanbari, Chin. Chem. Lett. 22 (2011) 447-450.
[37] G. Su, W.T. Wu, J.T. Wang, L.M. Wu, Chin. Chem. Lett. 19 (2008) 1013-1016.
[38] M.A. Zolfigol, D. Azarifar, B. Maleki, Tetrahedron Lett. 45 (2004) 2181-2183.
[39] G.S. Abitha, G.S.K. Kumar Reddy, C.S. Reddy, N. Fatima, J.S. Yadav, Synthesis (2003) 1267-1270.
[40] S. Ponnala, D.P. Sahu, Synth. Commun. 36 (2006) 2189-2194.
[41] M.M. Heravi, R. Hekmat-Shoar, L. Pedram, J. Mol. Catal. A: Chem. 231 (2005) 89-91.
[42] D. Azarifar, A. Gharshasebi, Heterocycles 68 (2006) 1209-1215.
[43] D. Azarifar, B. Maleki, K. Mohammadi, Heterocycles 71 (2007) 683-689.
[44] (a) D. Azarifar, M. Shaebanzadeh, Molecules 7 (2002) 885-895. (b) L.D. Nunno, A. Scilimati, P. Vitale, Tetrahedron 58 (2002) 2659-2665. (c) R.M. Kedar, N.N. Vidhale, Orient. J. Chem. (1997) 143-148. (d) A.H. Blatt, J. Am. Chem. Soc. 71 (1949) 1861-1862.
StatisticsArticle View: 965PDF Download: 655