(Diacetoxyiodo)benzene (DIB) catalyzed green and efficient synthesis of biscoumarin derivatives in aqueous media

Document Type: Articles

Authors

Post Graduate and Research Centre, Department of Chemistry, Padmashri Vikhe Patil College of Arts, Science and Commerce, Pravaranagar, Dist. Ahmednagar-413713 (MS), India

Abstract

(Diacetoxyiodo)benzene has been used as an efficient catalyst for an improved and rapid one-pot synthesis of biscoumarin derivatives in excellent yield under reflux condition using water as a environmentally benign reaction medium. This aqua mediated Knoevenagel condensation of various aromatic and hetero-aromatic aldehydes with 4-hydroxycoumarin using catalytic amount of (diacetoxyiodo)benzene devoid the route of expensive, corrosive reagents and toxic solvents. Along with the routine aldehydes, the aldehydes like aryl-sulphonyloxybenzaldehyde, aryl-carbonyloxybenzaldehyde also leads to the product under the reaction conditions. High yields, shorter reaction times, one pot condensation, operational simplicity, easy work-up, purification of products by non-chromatographic methods are some additional features of this method.

Keywords


[1] R.S. Overmann, M.A. Stahmann, C.F. Huebner, W.R. Sullivan, L. Spero, D.G. Doherty, M. Ikawa, L. Graf, S. Roseman, K.P. Link, J. Biol. Chem. 153 (1944) 5-24.
[2] I. Kostava, I. Manolov, I. Nicolova, S. Konstantonov, M. Karaivanova, Eur. J. Med. Chem. 36 (2001) 339-347.
[3] Z.H. Chohan, A.U. Shaikh, A. Rauf, C.T. Supuran, J. Enzym. Inhib. Med. Chem. 21(2006) 741-748.
[4] J.C. Jung, J.H. Lee, S. Oh, J.G. Lee, O.S. Park, Bioorg. Med. Chem. Lett. 14 (2004) 5527-5531.
[5] (a) P.C.M Mao, J.F. Mouscadet, H. Leh, C. Auclair, L.Y. Hsu, Chem. Pharm. Bull. 50 (2002) 1634-1637. (b) C.X. Su, J.F. Mouscadet, C.C. Chiang, H.J. Tsai, L.Y. Hsu, Chem. Pharm. Bull. 54 (2006) 682-686. (c) H. Zhao, N. Neamati, H. Hong, A. Mazumdar, S. Wang, S. Sunder, G.W.A. Milne, Y. Pommier, T.R. Burke, J. Med. Chem. 40 (1997)  242-249.
[6] L.A. Singer, N.P. Kong, J. Am. Chem. Soc. 88 (1996) 5213-5219.
[7] A.N. Bhat, B.D. Jain, Talanta 5 (1960) 271-275.
[8] G. Appendino, G. Cravotto, S. Tagliapietra, S. Ferraro, G.M. Nano, G. Palmisano, Helv. Chim. Acta 74 (1991) 51-1458.
[9] I. Manolov, C.M. Moessmer, N.D. Danchev, Eur. J. Med. Chem. 41 (2006) 882-890.
[10] R.D.H. Murray, J. Mendez, S.A. Brown, The Natural Coumarins: Ocurrence, Chemistry and Biochemistry, John Wiley & Sons Ltd, Chichester, New York, 1982.
[11] J. Lehmann, Lancet 241 (1943) 611-613.
[12] W.R. Sullivan, C.F. Huebner, M.A. Stahmann, K.P. Link, J. Am. Soc. 65 (1943) 2288-2291.
[13] K.M. Khan, S. Iqbal, M.A. Lodhi, G.M. Mahaveri, Z. Ullah, M.I. Choudhary, A.U. Rahman, S. Perveen, Bioorg. Med. Chem. 12 (2004) 1963-1968.
[14] (a) D. Zavrsnik, S. Muratovic, S. Spirtovic, D. Softic, M. Medic-Saric, Bosnian J. Basic Med. Sci. 8 (2008) 277-281. (b) D. Zavrsnik, S. Muratovic, D. Makuc, J. Plavec, M. Cetina, A. Nagl, E.D. Clercq, J. Balzarini, M. Mintas, Molecules 16 (2011) 6023-6040.
[15] (a) S. Qadir, A.A. Dar, K.Z. Khan, Synth. Commun. 38 (2008) 3490-3499. (b) J.F. Zhou, G.X. Gong, L.T. An, X.J. Sun, F.X. Zhu, Chin. J. Org. Chem. 29 (2009) 1988-1991. (c) J.M. Khurana, S. Kumar, Tetrahedron Lett. 50 (2009) 4125-4127.
[16] A.M.A. AL-Kadasi, G.M. Nazeruddin, Int. J. Chem. Sci. 10 (2012) 324-330.
[17] M. Kidwai, V. Bansal, P. Mothsra, S. Saxena, R.K. Somavanshi, S. Dey, T.P. Singh, J. Mol. Catal. A: Chem. 268 (2007) 76-81.
[18] K.M. Khan, S. Iqbal, M.A. Lodhi, G.M. Maharvi, Z. Ullah, M.I. Choudhary, A. Rahman, S. Perveen, Bioorg. Med. Chem. 12 (2004) 1963-1968.
[19] H. Hagiwara, N. Fujimoto, T. Suzuki, M. Ando, Heterocycles 53 (2000) 549-552.
[20] A. Shamsaddini, E. Sheikhhosseini, Int. J. Org. Chem. 4 (2014) 135-141.
[21] E. Sheikhhosseini, Trend. Mod. Chem. 3 (2012) 34-37.
[22] H. Mehrabi, H. Abusaidi, J. Iran. Chem. Soc. 7 (2010) 890-894.
[23] Z. Siddiqui, F. Farooq, Catal. Sci. Technol. 1 (2011) 810-816.
[24] J.M. Khurana, S. Kumar Tetrahedron. Lett. 50 (2009) 4125-4127.
[25] (a) J.M. Khurana, S. Kumar, Monatsh. Chem. 141 (2010) 561-564. (b) A. Tzani, A. Douka, A. Papadopoulos, E.A. Pavlatou, E. Voutsas, A. Detsi, ACS Sustainable Chem. Eng. 1 (2013) 1180-1185.
[26] (a) J.M. Khurana, K. Vij, J. Chem. Sci. 124 (2012) 907-912. (b) H. Babaei, N. Montazeri, Orient. J. Chem. 30 (2014) 577-580.
[27] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and practice, Oxford Univeristy Press, Oxford, New York, USA, 1998.
[28] J.A. Darr, M. Poliakoff, Chem. Rev. 99 (1999) 495-541.
[29] (a) B. Tamami, A. Fadavi, Iran. Polym. J. 15 (2006) 331-339. (b) M. Gopalakrishnan, P. Sureshkumar, V. Kanagarajan, J. Thanusu, R. Govindaraju, Arkivoc (2006) 130-141. (c) D. Amantini, F. Fringuelli, O. Piermatti, F. Pizzo, L. Vaccaro, Green Chem. 3 (2001) 229-232. (d) G. Brafola, F. Fringuelli, O. Piermatti, F. Pizzo, Heterocycles 43 (1996) 1257-1266.
[30] M.L. Deb, P.J. Bhuyan, Tetrahedron Lett. 46 (2005) 453-6456.
[31] R. Criegee, H. Beucker, J. Liebigs, Ann. Chem. 541 (1939) 218-238.
[32] A. Pelter, S. Elgendy, Tetrahedron Lett. 29 (1988) 677-680.
[33] V.V. Zhdankin, In Hypervalent Iodine Chemistry, T. Wirth Ed. Spring-Verlag, New York, 2003, Chapter 4, pp. 99-136.
[34] A. Varvoglis, Hypervalent Iodine in Organic synthesis, Academic Press, 1997, Chapter 3, pp. 19-50.
[35] A.S. Waghmare, K.R. Kadam, S.S. Pandit, Arch. App. Sci. Res. 3 (2011) 423-427.