Brønsted acidic ionic liquid as the efficient and reusable catalyst for synthesis of coumarins via Pechmann condensation under solvent-free conditions

Document Type: Articles

Authors

1 Pharmaceutical Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156, Islamic Republic of Iran

2 Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, P.O. Box 517, Iran

3 Department of Science, Fasa Branch, Islamic Azad University, Post Box No 364, Fasa, 7461713591, Fars, Iran.

Abstract

A mild and efficient method has been developed for the preparation of substituted coumarins from reaction of various phenols with different β-ketoesters via Pechmann condensation in the presence of Brønsted acidic ionic liquid (N-(4-sulfonic acid) butyl triethylammonium hydrogen sulfate) as an effective catalyst under solvent-free conditions. Different phenols reacted with ethyl acetoacetate to produce the corresponding substituted coumarins in high to excellent yields and short reaction times. Moreover, [TEBSA][HSO4] has been used as an effective green catalyst for the synthesis of coumarin derivatives under solvent-free conditions. Using the relatively non-toxic (halogen-free) and reusable Brønsted acidic ionic liquid, high catalytic efficiency, high yields, short reaction times and straightforward work-up are advantages of this protocol.

Keywords


[1] C.J. Wang, Y.J. Hsieh, C.Y. Chu, Y.L. Lin, T.H. Tseng, Cancer Lett.183 (2002) 163-168.
[2] F.H. Dexeus, C.J. Logothetis, A. Sella, K. Fitz, R. Amato, J.M. Reuben, N.J. Dozier, J. Clin. Oncol. 8 (1990) 325-329.
[3] D.E. Zembower, S. Liao, M.T. Flavin, Z.Q. Xu, T.L. Stup, R.W. Buckheit, A. Khilevich, A.A. Mar, A.K. Sheinkman, J. Med. Chem. 40 (1997) 1005-1017.
[4] A. Maxwell, Mol. Microbiol. 9 (1993) 681-686.
[5] M.A. Bhat, N. Siddiqui, S.A. Khan, Indian J. Pharm. Sci. 68 (2006) 120-123.
[6] C.M. Lin, S.T. Huang, F.W. Lee, H. Sawkuo, M.H. Lin, Bioorg. Med. Chem. 14 (2006) 4402-4409.
[7] L. Huang, X. Yuon, D. Yu, K.H. Lee, H.C. Chin, Virology 332 (2005) 623-628.
[8] G. Cravotto, G.M. Nano, G. Palmisano, S. Tagliapietra, Tetrahedron: Asymmetry 12 (2001) 707-709.
[9] G.J. Fan, W. Mar, M.K. Park, E. Wook Choi, K. Kim, S. Kim, Bioorg. Med. Chem. Lett. 11 (2001) 2361-2363.
[10] R.O. Kennedy, R.D. Tharnes, Coumarins: Biology, Application and Mode of Action, Wiley & Sons Society: Chichester, 1997.
[11] M. Zahradink, The Production and Application of Fluorescent Brightening Agents, Wiley & Sons, 1992.
[12] M. Maeda, Laser Dyes, Academic Society: New York, 1994.
[13] H.Von Pechmann, C. Duisberg, Ber. Dtsch. Chem. Ges. 16 (1883) 2119-2128.
[14] I. Yavari, R. Hekmat-Shoar, A. Zonouki, Tetrahedron Lett. 39 (1998) 2391-2392.
[15] W.M. Abdou, N.A.F. Ganoub, N.M. Abdel-Rahman, Phosphorus Sulfur Relat. Elem. 61(1991) 91-96.
[16] G. Brufola, F. Fringuelli, O. Piermatti, F. Pizzo, Heterocycles 43 (1996) 1257-1266.
[17] B.M. Trost, F.D. Toste, K. Greenman, J. Am. Chem. Soc. 125 (2003) 4518-4526.
[18] H. Wulff, H. Rauer, T. During, C. Hanselmann, K. Ruff, A. Wrisch, S. Grissmer, W.Hansel, J. Med. Chem. 41 (1998) 4542-4549.
[19] T. Symeonidis, M. Chamilos, D.J. Hadjipavlou-Litina, M. Kallitsakis, K.E. Litinas, Bioorg. Med. Chem. Lett. 19 (2009) 1139-1142.
[20] H. Valizadeh, A. Shockravi, Tetrahedron Lett.46 (2005) 3501-3503.
[21] G.V.M. Sharma, R.J. Janardhan, L.P. Sree, K.P. Radha, Tetrahedron Lett. 46 (2005) 6119-6121.
[22] V.M. Alexander, R. P. Bhat, S. D. Samant, Tetrahedron Lett. 46 (2005) 6957-6959.
[23] S. Puri, B. Kaur, A. Parmar, H. Kumar, Sonochemistry 16 (2009) 705-707.
[24] K.K. Upadhyay, R.K. Mishra, A. Kumar, Catal. Lett. 121 (2008) 118-120.
[25] B. Karimi, H. Behzadnia, Catal. Commun. 12 (2011) 1432-1436.
[26] G.M. Nazeruddin, M.S. Pandharpatte, K.B. Mulani, C.R. Chim. 15 (2012) 91-95.
[27] B. Suresh Kuarm, J. Venu Madhav, S. Vijaya Laxmi, B. Rajitha, Y. Thirupathi Reddy, P. Narsimha Reddy, P.A. Crooks, Synth. Commun. 40 (2010) 3358-
3364.
[28] G.P. Romanelli, D. Bennardi, D.M. Ruiz, G. Baronetti, H.J. Thomas, J.C. Autino, Tetrahedron Lett. 45 (2004) 8935-8939.
[29] T. Welton, Chem. Rev. 99 (1999) 2071-2084.
[30] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39 (2000) 3772-3789.
[31] S. Sahoo, T. Joseph, S.B. Halligudi, J. Mol. Catal. A: Chem. 244 (2006) 179-182.
[32] D. C. Forbes, K. J. Weaver, J. Mol. Catal. A: Chem. 214 (2004) 129-132.
[33] J.S.Wilkes, J. Mol. Catal. A: Chem. 214 (2004) 11-17.
[34] A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weaver, D.C. Forbes, J.H. Davis Jr., J. Am. Chem. Soc. 124 (2002) 5962-5963.
[35] D. Fang, Q.-R. Shi, J. Cheng, K. Gong, Z.-L.Liu, Appl. Catal. A: Gen. 345 (2008) 158-163.
[36] X. Liu, M. Liu, X. Guo, J.Zhou, Catal. Commun. 9 (2008) 1-7.
[37] A.R. Hajipour, Y. Ghayeb, N. Sheikhan, A.E. Ruoho, Tetrahedron Lett. 50 (2009) 5649-5651.
[38] M.K. Potdar, S.S. Mohile, M.M. Salunkhe, Tetrahedron Lett. 42 (2001) 9285-9287.