N,N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: Highly selective and feasible organocatalyst for synthesis of β-nitroalcohols

Document Type: Articles

Authors

1 Department of Organic Chemistry, Faculty of Chemistry and Nanoscience& Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67149 Iran.

2 Department of Organic Chemistry, Faculty of Chemistry and Nanoscience& Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67149 Iran. IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM, Johor Baharu, Johor, Malaysia.

3 IbnuSina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM, Johor Baharu, Johor, Malaysia.

Abstract

An organosuperbase (N,N-dimethylbiguanide) immobilized on mesoporous and magnetically separable silica supports, was found for the first time, to act as a highly-stable, scalable and efficient heterogeneous catalyst for the Henry reaction under mild and neutral condition. Several factors such as catalyst amount, solvent and reaction time concerning the reactivity were also discussed. The procedure constitutes the first immobilized biguanide promotion of selective synthesis of β-nitroalcohols without addition of stoichiometric amount of any base and showed a broad substrate scope. The uniqueness of this catalyst lay in its cleanness, cost-effectiveness, ease in removal at the end of reaction, and chemoselective formation of a wide range of β-nitroalcohols. These materials can be easily converted to other useful synthetic intermediates which many of them have been exemplified in synthetic organic chemistry and pharmaceutical industry.

Keywords


[1]     F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 45 (2006) 3216-3251.
[2] X. Dong, Y. Hui, S. Xie, P. Zhang, G. Zhou, Z. Xie, RSC Adv. 3 (2013) 3222-3226.
[3] Z. Tao, RSC Adv. 4 (2014) 18961-18980.
[4] N. Gao, Y.-L. Chen, Y.-H. He, Z. Guan, RSC Adv. 3 (2013) 16850-16856.
[5] L. Henry and C. R. Seances, Acad. Sci. 120(1895)1265-1268.
[6] A.P. Piccionello, P. Pierro, A. Accardo, S. Buscemi, A. Pace, RSC Adv. 3 (2013)24946-24951.
[7] Y. Zhang, Z.J. Li, H.S. Xu, Y. Zhang, W. Wang, RSC Adv. 1 (2011) 389-392.
[8] R. Ballini, G. Bosica, J. Org. Chem. 62 (1997) 425-427.
[9] Y. Wei, L. Yao, B. Zhang, W. He, S. Zhang, Tetrahedron 67 (2011) 8552-8558.
[10] L. Yao, Y. Wei, P. Wang, W. He, S. Zhang, Tetrahedron 68 (2012) 9119-9124.
[11] R. Ballini, D. Fiorini, M.V. Gil, A. Palmieri, Tetrahedron 60 (2004) 2799-2804.
[12] M.N. Elinson, A.I. Ilovaisky, V.M. Merkulova, F. Barba, B. Batanero, Tetrahedron 64 (2008) 5915-
5919.
[13] R. Ballini, A. Palmieri, P. Righi, Tetrahedron 63 (2007) 12099-12121.
[14] J. Han, Y. Xu, Y. Su, X. She, X. Pan, Catal. Commun. 9 (2008) 2077-2079.
[15] T. Ishikawa, Superbases for organic synthesis: guanidines, amidines and phosphazenes and related organocatalysts, John Wiley & Sons, 2009.
[16] I. Kudyba, J. Raczko, Z. Urbańczyk-Lipkowska, J. Jurczak, Tetrahedron 60 (2004) 4807-4820.
[17] D. Simoni, R. Rondanin, M. Morini, R. Baruchello, F.P. Invidiata, Tetrahedron Lett. 41 (2000) 1607-1610.
[18] R. Mrówczyński, A. Nan, J. Liebscher, RSC Adv. 4 (2014) 5927-5952.
[19] Z. Zarnegar, J. Safari, RSC Adv. 4 (2014) 20932-20939.
[20] S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.
[21] A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127 (2005) 12486-12487.
[22] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Chem. Rev. 111 (2011) 3036-3075.
[23] A. Alizadeh, M. Khodaei, D. Kordestani, A. Fallah, M. Beygzadeh, Microporous Mesoporous Mater. 159 (2012) 9-16.
[24] A. Alizadeh, M. Khodaei, D. Kordestania, M. Beygzadeh, J. Mol. Catal. A: Chem. 372 (2013) 167-174.
[25] A. Alizadeh, M.M. Khodaei, M. Beygzadeh, D. Kordestani, M. Feyzi, Bull. Korean Chem. Soc. 33 (2012) 2547-2552.
[26] M. Beygzadeh, A. Alizadeh, M. Khodaei, D. Kordestani, Catal. Commun. 32 (2013) 86-91.
[27] N. Ono, The nitro group in organic synthesis, John Wiley & Sons, 2003.
[28] K. Dhahagani, J. Rajesh, R. Kannan, G. Rajagopal, Tetrahedron: Asymmetry 22 (2011) 857-865.
[29] Z.-L. Guo, S. Zhong, Y.-B. Li, G. Lu, Tetrahedron: Asymmetry 22 (2011) 238-245.
[30] X.-G. Liu, J.-J. Jiang, M. Shi, Tetrahedron: Asymmetry 18 (2007) 2773-2781.
[31] B. Subba Reddy, J. George, Tetrahedron: Asymmetry 22 (2011) 1169-1175.
[32] A. Cwik, A. Fuchs, Z. Hell, J.-M. Clacens, Tetrahedron 61 (2005) 4015-4021.
[33] V.J. Bulbule, V.H. Deshpande, S. Velu, A. Sudalai, S. Sivasankar, V. Sathe, Tetrahedron 55 (1999) 9325-9332.
[34] A. Noole, K. Lippur, A. Metsala, M. Lopp, T. Kanger, J. Org. Chem. 75 (2010) 1313-1316.
[35] L. Cheng, J. Dong, J. You, G. Gao, J. Lan, Chem. Eur. J. 16 (2010) 6761-6765.
[36] S. Selvakumar, D. Sivasankaran, V.K. Singh, Org. Biomol. Chem. 7 (2009) 3156-3162.