Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Pt for efficient removal of dyes from wastewater effluents

Document Type: Articles

Authors

Department of Science, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran

Abstract

In this work, ZnO/SiO2 nanoparticles were prepared using sol-gel method, and platinum particles were loaded on ZnO/SiO2 nanoparticles by photoreductive method. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The XRD patterns showed that the zinc oxide samples have a wurtzite structure (hexagonal phase). The crystallite size calculated by Scheerer’s equation is ~ 32 nm. For photocatalytic test, decomposition of Rhodamine B (RB), as an organic pollutant, was carried out. A comparison of degradation between bare catalyst and platinum loaded ZnO/SiO2 nanoparticle under UV-Vis light irradiation shows that the Pt- ZnO/SiO2 photocatalyst is more efficient than ZnO/SiO2 nanoparticles. Also, the activity of ZnO/SiO2 nanoparticles in the visible light are minimal, while loading of Pt in zinc oxide network displaced the band gap toward longer wavelengths (visible light) and improved the photocatalysis activity of ZnO/SiO2 in the range of visible light.

Keywords


[1] Y. Ma, J.N. Yao, J. Photochem. Photobiol. A 116 (1998) 167-170.
[2] A.M. Luis, M.C. Neves, M.H. Mendonc¸ O.C. Monteiro, Mater. Chem. Phys. 125 (2011) 20–25.
[3] J.J. Lopez-Penalver, M. Sanchez-Polo, C.V. Gomez-Pacheco, J. Rivera-Utrilla, J. Chem. Technol. Biotechnol. 85 (2010) 1325–1333.
[4] S. Sontakke, J. Modak, G. Madras, Chem. Eng. J. 165 (2010) 225–233.
[5] E.G.L. Oliveiraa, J.J. Rodrigues. H.P. de Oliveiraa, Chem. Eng. J. 172 (2011) 96-101.
[6] M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341-
357.
[7] H. Shu, J. Xie, H. Xu, H. Li, Z. Gu, G. Sun, Y. Xu, J. Alloy. Compd. 496 (2010) 633–637.
[8] G.K. Pradhan, K.M. Parida, Int. J. Eng. Sci. Technol. 2 (2010) 53-65.
[9]. N. P. Mohabansi, V. B. Patill, N. Yenkie, R. Rasayan, J. Chem. 4 (2011) 814-819.
[10] R. Slama, F. Ghribi, A. Houas, C. Barthou, L.E. Mir, Int. J. Nanoelect. Mater. 3 (2010)133-142.
[11] A. F. Comanescu, M. Mihaly, A. Meghea, UPB. Sci. Bull. Series B 74 (2012) 49-60.
[12] D.V. Demydov, Nanosized Alkaline Earth Metal Titanates: Effects of Size on Photocatalytic and Dielectric Properties, Kansas State University Manhattan, Kansas, 2006.
[13]. J. Li, D. Guo, X. Wang, H. Wang, H. Jiang, B. Chen, Nanoscale Res. Lett. 5 (2010) 1063–1071.
[14] S. Baskoutas, A. F. Terzis, J. Appl. Phys. 99 (2006) 013708-1 – 013708-4.
[15] C. Chen, J. Liu, P. Liu, B. Yu, Adv. Chem. Eng. Sci. 1 (2011) 9-14.
[16] S. Kant, A. Kumar, Adv. Mat. Lett. 3 (2012) 350-354.
[17] F.J. Sheini, J. Singh, O.N. Srivasatva, D.S. Joag, M.A. More, Appl. Surf. Sci. 256 (2010) 2110–2114.
[18] S.J. Pearton, I.E. Fellow, D.P. Norton, M.P. Ivill, A.F. Hebard, M.J. Zavada, W.M. Chen, I.A. Buyanova, IEEE Trans. Electron Devices 54 (2007) 1040-1048.
[19] M. Qamar, M. Muneer, Desalination 249 (2009) 535-540.
[20] M. Faiz, N. Tabet, A. Mekki, B. S. Mun, Z. Hussain, Thin. Solid. Films 515 (2006) 1377–1379.
[21] J. Kim, K. Yong, J. Nanopart. Res. 14 (2012) 1033-1 –1033-10.
[22] S. Gharibe, L. Vafayi, S. Afshar, J. Indian Chem. Soc. 91 (2014) 527-532.
[23] A.İ. Vaizoğullar, A. Balcı, Int. J. Res. Chem. Environ. 4 (2014) 161-165.
[24] Z.R. Khan, M.S. Khan, M. Zulfequar, M.S. Khan, Mater. Sci. Appl. 2 (2011) 340-345.
[25] R.N. Gayen, K. Sarkar, S. Hussain, R. Bhar, A.K. Pal, Ind. J. Pure. Appl. Phys. 49 (2011) 470- 477.
[26] R.Y. Hong, J. H. Li, L.L. Chen, D.Q. Liu, H. Li, Z.Y. Zheng, J. Ding, Powder Technol. 189 (2009) 426–432.
[27] S. Wang, H. Cao, F. Gu, C. Li, G. Huang, J. Alloy. Compd. 457 (2008) 560-564.
[28] F. Li, X. Huang, Y. Jiang, L. Liu, Z. Li, Mater. Res. Bull. 44 (2009) 437-441.
[29] Y. Li, G. Lu, S. Li, J. Photochem. Photobiol. A 152 (2002) 219-228.
[30] W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem. 98 (1994) 13669-13679.