Fe3O4-chitosan nanoparticles as a robust magnetic catalyst for efficient synthesis of 5-substituted hydantoins using zinc cyanide

Document Type: Articles

Authors

Laboratory of Organic Compound Research, Department of Organic Chemistry, College of Chemistry, University of Kashan, P.O. Box: 87317-51167 Kashan, I.R. Iran.

Abstract

In this paper, Fe3O4-chitosan nanoparticles were prepared by the immobilization of chitosan on the surface of Fe3O4 nanoparticles. Then, the 5-substituted hydantoins were synthesized from the condensation of aldehyde derivatives, ammonium carbonate and zinc cyanide as a well-known cyanating agent by the magnetic Fe3O4-chitosan nanoparticles under neat conditions. Fe3O4-Chitosan nanocatalyst as a renewable hybrid catalyst was easily recovered by an external magnet and reused for 4 times without obvious drop in its catalytic activity. The purpose of this research was to provide an easy method for the synthesis of 5-substituted hydantoins in high yields and short reaction times by a robust and magnetic recoverable catalyst.

Keywords


[1] J. Qu, G. Liu, Y. Wang, R. Hong, Adv. Powder Technol. 21 (2010) 461-467.
[2] G. Li, Y. Jiang, K. Huang, P. Ding, J. Chen, J. Alloys Compd. 466 (2008) 451-456.
[3] Y. Wu, J. Guo, W.L. Yang, C.C. Wang, S.K. Fu, Polymer 47 (2006) 5287-5294.
[4] P. Wunderbaldinger, L. Josephson, R. Weissleder, Bioconjugate Chem. 13 (2002) 264-268.
[5] W. Wang, L. Deng, Z.H. Peng, X. Xiao, Enzym. Microb. Technol. 40 (2007) 255-261.
[6] H. Gu, K. Xu, C. Xu, B. Xu, Chem. Commun (2006) 941-949.
[7] L. Zhou, C. Gao, W. Xu, Langmuir 26 (2010) 11217-11225.
[8] B. Karimi, F. Mansouri, H. Vali, Green Chem. 16 (2014) 2578-2596.
[9] T. Zeng, L. Yang, R. Hudson, G. Song, A.R. Moores, C.J. Li, Org. Lett. 13 (2011) 442-445.
[10] C. Park, H.J. Lee, H.S. Jung, M. Kim, H.J. Kim, K.H. Park, H. Song, Chem. Cat. Chem. 3 (2011) 755-760.
[11] S. Wittmann, A. Schatz, R.N. Grass, W.J. Stark, O. Reiser, Angew. Chem. Int. Ed. 49 (2010) 1867-
1870.
[12] B. Kaboudin, R. Mostafalu, T. Yokomatsu, Green Chem. 15 (2013) 2266-2274.
[13] R.L. Oliveira, P.K. Kiyohara, L.M. Rossi, Green Chem. 12 (2010) 144-149.
[14] L. M. Rossi, F.P. Silva, L.L.R. Vono, P.K. Kiyohara, E.L. Duarte, R. Itri, R. Landers, G. Machado, Green Chem. 9 (2007) 379-385.
[15] Y. Wang, J.K. Lee, J. Mol. Catal. A: Chem. 263 (2007) 163-168.
[16] L. Xu, W. Zhang, Y. Ding, Y. Peng, S. Zhang, W. Yu, Y. Qian, J. Phys. Chem. B 108 (2004) 10859-10862.
[17] R.-Y. Hong, J.-H. Li, S.-Z. Zhang, H.-Z. Li, Y. Zheng, J.-M. Ding, D.-G. Wei, Appl. Surf. Sci. 255 (2009) 3485-3492.
[18] L.Y. Wang, H.Y. Park, S.I.I. Lim, M.J. Schadt, D. Mott, J. Luo, X. Wang, C.J. Zhong, J. Mater. Chem. 18 (2008) 2629-2635.
[19] A. Maleki, N. Ghamari, M. Kamalzare, RSC Adv. 4 (2014) 9416-9423.
[20] L.D. Tran, B.H. Nguyen, N.V. Hieu, H.V. Tran, H.L. Nguyen, P.X. Nguyen, Mater. Sci. Eng. C 31 (2011) 477-485.
[21] H.V. Tran, L.D. Tran, T.N. Nguyen, Mater. Sci. Eng. C 30 (2010) 304-310.
[22] A. Bozkir, O.M. Saka, Drug Deliv. 11 (2004) 107-112.
[23] Y. Chang, D. Chen, J. Colloid Interface Sci. 283 (2005) 446-451.
[24] N.D. Cuong, T.T. Hoa, D.Q. Khieu, T.D. Lam, N.D. Hoa, N. Van Hieuc, J. Alloys Compd. 523 (2012) 120-126.
[25] X. Xue, J. Wang, L. Mei, Z. Wang, K. Qi, B. Yang, Coll. Surf. B Biointerfaces 103 (2013) 107-113.
[26] L. Zhang, X. Zhu, H. Sun, G. Chi, J. Xu, Y. Sun, Curr. Appl. Phys. 10 (2010) 828-833.
[27] Z. Lei, X. Pang, N. Li, L. Lin, Y. Li, J. Mater. Process. Technol. 209 (2009) 3218-3225.
[28] L. Somsak, M.L. Kovacs, E. Toth, L. Osz, Z. Szilagyi, Z. Gyorgydeak, T. Dinya, B. Docsa, P.G. Toth, J. Med. Chem. 44 (2001) 2843-2848.
[29] J.C. Thenmozhiyal, P.T.H. Wong, W.K. Chui, J. Med. Chem. 47 (2004) 1527-1535.
[30] F. Medda, C. Hulme, Tetrahedron Lett. 53 (2012) 5593-5593.
[31] S.K. Agrawal, M. Sathe, A.K. Halve, M.P. Kaushik, Tetrahedron Lett. 53 (2012) 5996-5999.
[32] A. Alizadeh, E. Sheikhi, Tetrahedron Lett. 48 (2007) 4887-4890.
[33] L. Grosse, S. Paquet, P. Caron, L. Fazli, P.S. Rennie, A. Belanger, O. Barbier, Cancer Res. 73 (2013) 6963-
6971.
[34] M. Dhanawat, A.G. Banerjee, S.K. Shrivastava, Med. Chem. Res. 21 (2011) 2807-2822.
[35] R.G. Murray, D.M. Whitehead, F. Le Stratb, S.J. Conway, Org. Biomol. Chem. 6 (2008) 988-991.
[36] K. Shen, X.H. Liu, Y.F. Cai, L.L. Lin, X.M. Feng, Chem. Eur. J. 15 (2009) 6008-6014.
[37] J.P. Abell, H. Yamamoto, J. Am. Chem. Soc. 131 (2009) 15118-15119.
[38] F. Cruz-Acosta, A. Santos-Exposito, P. Armas, F. García-Tellado, Chem. Commun. 44 (2009) 6839-6841.
[39] Z.F. Xie, G.L. Li, G. Zhao, J.D. Wang, Synthesis (2009) 2035-2039.
[40] S. Shah, B. Singh, Tetrahedron Lett. 53 (2012) 151-156.
[41] Z. Iqbal, A. Lyubimtsev, M. Hanack, Synlett (2008) 2287-2290.
[42] M. Shevlin, Tetrahedron Lett. 51 (2010) 4833-4836.
[43] Z. Huo, T. Kosugi, Y. Yamamoto, Tetrahedron Lett. 49 (2008) 4369-4371.
[44] M. Alterman, H.O. Andersson, N. Garg, G. Ahlsen, S. Lovgren, B. Classon, U.H. Danielson, I. Kvarnstrom, L. Vrang, T. Unge, B. Samuelsson, A. Hallberg, J. Med. Chem. 42 (1999) 3835-3844.
[45] J. Safari, L. Javadian, RSC Adv. 4 (2014) 48973-48979.
[46] L.M. Werbel, E.F. Elslager, J. Med. Chem. 20 (1977) 1569-1572.
[47] R.H. Divanford, A.Y. Ibrahim, M.M. Joullie, J. Heterocycl. Chem. 15 (1978) 691-786.
[48] S.K. Ahmed, J.-L.G. Etoga, S.A. Patel, R.J. Bridges, C.M. Thompson, Bioorg. Med. Chem. Lett. 21 (2011) 4358-4362.
[49] N.O. Mahmoodi, Z. Khodaee, Arkivoc 2007 (2007) 29-36.
[50] H.R. Henze, R.J. Speer, J. Am. Chem. Soc. 64 (1942) 522-523.
[51] G.A. Pinna, E. Gavinil, G. Cignarellaz, S. Scolastico, P. Fadda, Eur. J. Med. Chem. 30 (1995) 515-520.
[52] V.M. Viscontini, H. Raschig, Helv. Chim. Acta. 42 (1959) 570-573.
[53] E.J. Mcmullen, H.R. Henze, B.W. Wyatt, J. Am. Chem. Soc. 76 (1954) 5646-5650.
[54] T. Johnson, J. Am. Chem. Soc. 61 (1939) 2485-2487.