Kinetics study of biodiesel synthesis from sunflower oil using Ba-Sr/ZSM-5 nanocatalyst

Document Type: Articles

Authors

1 Faculty of Chemistry, Razi University, P. O. Box: 6714967346, Kermanshah, Iran. Nanoscience &Nanotechnology Research Center (NNRC), Razi University, P. O. Box: 6714967346, Kermanshah, Iran.

2 Faculty of Chemistry, Razi University, P. O. Box: 6714967346, Kermanshah, Iran.

Abstract

In the present research work, the kinetics of sunflower oil transesterification reaction in the presence of Ba-Sr/ZSM-5 nanocatalyst which prepared using incipient wetness impregnation method was investigated. The 10wt.%Ba-Sr/ZSM-5 (Sr/Ba=3/2) nanocatalyst was calcined at 600 °C for 6 h with a heating rate of 3 ºC/min. The experimental conditions were the methanol/oil 9/1molar ratio, reaction time (0-180 min) and reaction temperature (323–333 K) with mechanical stirring of 500 rpm. An irreversible pseudo-second order kinetics was considered for triglyceride conversion from the best modeling of experimental data. From the kinetic study, Ea=67.03 kJ/mol and A=9.29×108 1/min were obtained. The yield of the methyl ester products (86.69%) were determined using gas chromatography–mass spectrometry. characterization of the catalysts and precursors was performed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-Ray diffraction (XRD), Transmission electron microscopy (TEM), and N2 adsorption-desorption measurement methods.

Keywords


[1] D. Kumar, A. Ali, Biomass Bioenerg. 46 (2012) 459-468.
[2] P. Patil, V.G. Gude, S. Pinappu, S. Deng, Chem. Eng. J. 168 (2011) 1296-1300.
[3] L. Zhang, B. Sheng, Z. Xin, Q. Liu, S. Sun, Bioresource Technol. 101 (2010) 8144-8150.
[4] V.G. Deshmane, Y.G. Adewuyi, Fuel 107 (2013) 474-482.
[5] M. Gan, D. Pan, L. Ma, E. Yue, J. Hong, Chinese J. Chem. Eng. 17 (2009) 83-87.
[6] O. Ilgen, Fuel Process Technol. 95 (2012) 62-66.
[7] J.R. Oliveira Lima, Y.A. Ghani, R. B. Da Silva, F. M. Batista, R.A. Bini, L.C. Varanda, J.E. De Olivera, Appl. Catal. A 445 (2012) 76-82.
[8] E. Rashtizadeh, F. Farzaneh, J. Taiwan Inst. Chem. Eng. 44 (2013) 917-923.
[9] P.L. Boey, G.P. Maniam, S.A. Hamid, Chem. Eng. J. 168 (2011) 15-22.
[10] M.E. Borges, L. Díaz, Renew. Sust. Energ. Rev. 16 (2012) 2839-2849.
[11] F. Qiu, Y. Li, D. Yang, X. Li, P. Sun, Bioresource Technol. 102 (2011) 4150-4156.
[12] B. Yoosuk, P. Krasae, B. Puttasawat, P. Udomsap, N. Viriya Empikul, K. Faungnawakij, Chem. Eng. J. 162 (2010) 58-66.
[13] P.D. Patil, V. G. Gude, S. Deng, Ind. Eng. Chem. Res. 48 (2009)10850-10856.
[14] M. Di Serio, R. Tesser, L. Pengmei, E. Santacesaria, Energ. Fuel 22 (2008) 207-217.
[15] X. Deng, Z. Fang, Y.H. Liu, C.L. Yu, Energy 36 (2011) 777-784.
[16] L. Wen, Y. Wang, D. Lu, S. Hu, H. Han, Fuel 89 (2010) 2267-2271.
[17] S. Al Zuhair, F.W. Ling, L.S. Jun, Process Biochem. 42 (2007) 951-960.
[18] Y. Liu, H. Lu, W. Jiang, D. Li, S. Liu, B. Liang, Chinese J. Chem. Eng. 20 (2012) 740-746.
[19] D. Vujicic, D. Comic, A. Zarubica, R. Micic, G. Boskovic, Fuel 89 (2010) 2054-2061.
[20] A. Chouhan, A. Sarma, Renew. Sust. Energ. Rev. 15 (2011) 4378-4399.
[21] J.P. Evangelista, T. Chellappa, A.C. Coriolano, V.J. Fernandes, L.D. Souza, A.S. Araujo, Fuel Process Technol. 104 (2012) 90-95.
[22] X. Liu, X. Piao, Y. Wang, S. Zhu, Energ. Fuel 22 (2008)1313-1317.
[23] C.V. De Moura, A.G. De Castro, E.M. De Moura, J.R. Dos Santos, J.M. Moita Neto, Energ. Fuel 24 (2010) 6527-6532.
[24] Q. Shu, B. Yang, H. Yuan, S. Qing, G. Zhu, Catal. Commun. 8 (2007) 2159-2165.
[25] H. Wu, J. Zhang, Q. Wei, J. Zheng, J. Zhang, Fuel Process Technol. 109 (2013)13-18.
[26] S.S. Vieira, Z.M. Magriotis, N.A. Santos, A.A. Saczk, C.E. Hori, P.A. Arroyo, Bioresource Technol. 133 (2013) 248-255.
[27] A. Carrero, G. Vicente, R. Rodríguez, M. Linares, G.L. Del Peso, Catal. Today 167 (2011) 148-153.
[28] L.D. Borges, N.N. Moura, A.A. Costa, P.R. Braga, J.A. Dias, S.C. Dias, J.L. De Macedo, G.F. Ghesti, Appl. Catal. A 450 (2013) 114-119.
[29] R.I. Kusuma, J.P. Hadinoto, A. Ayucitra, F.E. Soetaredjo, S. Ismadji, Appl. Clay Sci. 74 (2013) 121-126.
[30] Y.Y. Wang, T.H. DaNg, B.H. Chen, D.J. Lee, Ind. Eng. Chem. Res. 51 (2012) 9959-9965.
[31] J.A. Botas, D.P. Serrano, A. García, R. Ramos, Appl. Catal. B Environ. 145 (2013) 205-215.
[32] N.N. Mahamuni, Y.G. Adewuyi, Energ. Fuel 23 (2009) 3773-3782.
[33] A. Birla, B. Singh, S.N. Upadhyay, Y.C. Sharma, Bioresource Technol. 106 (2012) 95-100.
[34] S. Jain, M.P. Sharma, Bioresource Technol. 101 (2010) 7701-7706.
[35] S. Jain, M.P. Sharma, S. Rajvanshi, Fuel Process Technol. 92 (2011) 32-38.
[36] A. Joelianingsih, H. Maeda, S. Hagiwara, H. Nabetani, Y. Sagara, T.H. Soerawidjaya, A.H. Tambunan, K. Abdullah, Renew. Energ. 33 (2008)1629-1636.
[37] C.S. Choi, J.W. Kim, C.J. Jeong, H. Kim, K.P. Yoo, J. Supercrit. Fluids 58 (2011) 365-370.
[38] P. Sivakumar, S. Sindhanaiselvan, N.N. Gandhi,
S.S. Devi, S. Renganathan, Fuel 103 (2013) 693-698.
[39] O.S. Stamenković, Z.B. Todorović, Lazić ML, Veljković VB, Skala DU, Bioresource Technol. 99 (2008)1131-1140.
[40] V.B. Veljković, O.S. Stamenković, Z.B. Todorović, M.L. Lazić, D.U. Skala, Fuel 88 (2009) 1554-1562.
[41] A.V. Marjanović, O.S. Stamenković, Z.B. Todorović, M.L. Lazić, V.B. Veljković, Fuel 89 (2010) 665-671.
[42] I. Lukić, Ž. Kesić, S. Maksimović, M. Zdujić, H. Liu, J. Krstić, D. Skala, Fuel 113 (2013) 367-378.
[43] A.G. Santos, A.S. Araujo, V.P. Caldeira, V.J. Fernandes, L.D. Souza, A.K. Barros, Thermochim. Acta 506 (2010) 57-61.
[44] O.S. Stamenković, V.B. Veljković, Z.B. Todorović, M.L. Lazić, I.B. Banković, D.U. Skala, Bioresource Technol. 101 (2010) 4423-4430.
[45] H. Sun, Y. Ding, J. Duan, Q. Zhang, Z. Wang, H. Lou, X. Zheng, Bioresource Technol. 101 (2010) 953-958.
[46] K. Hayat, M.A. Gondal, M.M. Khaled, S. Ahmed, A.M. Shemsi, Appl. Catal A 393 (2011) 122-129.
[47] R.K. Verma, K. Kumar, S.B. Rai, Solid State Sci. 12 (2010) 1146-1151.
[48] R. Kaur, S. Singh, O.P. Pandey, Physica B 407 (2012) 4765-4769.
[49] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373-380.