Et3N/H2O: A green and inexpensive organocatalytic medium for efficient Baylis-Hillman reaction

Document Type: Articles

Authors

Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, 17th Km, Pajoohesh Blvrd., Tehran-Karaj Highway, Tehran, Iran.

Abstract

A new organocatalyzed method is developed for Baylis–Hillman reactions of cyclohex-2-enone with various aromatic aldehydes in the presence of water and catalytic quantities of triethylamine. All reactions take place at room temperature and relatively good yields of various products are obtained within a time frame which does not exceed 24 hours. The mild reaction conditions used in the present method and the versatility of the process are the main advantages of this procedure. As a result, products of the Baylis–Hillman reaction of cyclohex-2-enone with various aromatic aldehydes bearing electron withdrawing and electron releasing groups are obtained under inexpensive organocatalytic conditions.

Keywords


[1] D.W.C. MacMillan, Nature 455 (2008) 304-308.
[2] D.B. Ramachary, K. Anebouselvy, N.S. Chowdari, C.F. Barbas III, J. Org. Chem. 69 (2004) 5838-5849.
[3] D.B. Ramachary, N.S. Chowdari, C.F. Barbas III, Angew. Chem. Int. Ed. 42 (2003) 4233-4237.
[4] D.C. Rideout, R. Breslow, J. Am. Chem. Soc. 102 (1980) 7816-7817.
[5] P.A. Grieco, P. Garner, Z. He, Tetrahedron Lett. 24 (1983) 1897-1900.
[6] S. Zhu, S. Yu, D. Ma, Angew. Chem. Int. Ed. 47 (2008) 545-548.
[7] C.I. Herrerıas, X. Yao, Z. Li, C. Li, Chem. Rev. 107 (2007) 2546-2562.
[8] A.B. Baylis, M.E.D. Hillman, Ger. Offen. (1972) 2155113.
[9] M.E.D. Hillman, A.B. Baylis, U.S. Patent (1963) 3743669.
[10] D. Basavaiah, B.S. Reddy, S.S. Badsara, Chem. Rev. 110 (2010) 5447-5674.
[11] S.K. Mandal, M. Paira, S.C. Roy, J. Org. Chem. 73 (2008) 3823-3827.
[12] S. Madhavan, P. Shanmugam, Org. Lett. 13 (2011) 1590-1593.
[13] T.G. Back, D.A. Rankic, J.M. Sorbetti, J.E. Wulff, Org. Lett. 7 (2005) 23772379.
[14] H.-P. Deng, Y. Shi, M. Wei, Org. Lett. 13 (2011) 3348-3351.
[15] Y. Hayashi, K. Okado, I. Ashimine, M. Shoji, Tetrahedron Lett. 43 (2002) 8683-8686.
[16] M.K. Kundu, S.B. Mukherjee, N. Balu, R. Padmakumar, S.V. Bhat, Synlett (1994) 444-445.
[17] F. Coelho, G. Diaz, C.A.M. Abella, W.P. Almeida, Synlett (2006) 435-439.
[18] S.R. Sheng, Q. Wang, Q.Y. Wang, L. Guo, X.L. Liu, X. Huang, Synlett (2006) 1887-1890.
[19] Y. Yunkyung, J.-S. Ryu, J. Org. Chem. 75 (2010) 4183-4191.
[20] C. Patel, R.B. Sunoj, J. Org. Chem. 75 (2010) 359-367.
[21] K. Wadhwa, V.R. Chintareddy, J.G. Verkade, J. Org. Chem. 74 (2009) 6681-6690.
[22] F. Zhong, Y. Wang, X. Han, K.-W. Huang, Y. Lu, Org. Lett. 13 (2011) 1310-1313.
[23] A. Patra, A.K. Roy, S. Batra, A.P. Bhaduri, Synlett (2002) 1819-1822.
[24] D. Basavaiah, B. Sreenivasulu, A.J. Rao, J. Org. Chem. 68 (2003) 5983-5991.
[25] M.S. Abaee, S. Cheraghi, Turk. J. Chem. 38 (2014) 650-660.
[26] M.S. Abaee, S. Cheraghi, Arkivoc IV (2014) 1-10.
[27] M.S. Abaee, S. Cheraghi, J. Sulfur Chem. 35 (2014) 261-269.
[28] M.S. Abaee, M.M. Mojtahedi, G.F. Pasha, E. Akbarzadeh, A. Shockravi, A.W. Mesbah, W. Massa, Org. Lett. 13 (2011) 5282-5285.
[29] W. Pei, H.-X. Wei, G. Li, Chem. Commun. (2002) 2412-2413.
[30] J.C. Gomes, M.T. Rodrigues Jr, A. Moyano, F. Coelho, Eur. J. Org. Chem. (2012) 6861-6866.
[31] S. Luo, P.G. Wang, J.-P. Cheng, J. Org. Chem. 69 (2004) 555-558.
[32] D.-Y. Yuan, Y.-Q. Tu, C.-A. Fan, J. Org. Chem. 73 (2008) 7797-7799.
[33] M. Wang, B.M. Wang, L. Shi, Y.Q. Tu, C.-A. Fan, S.H. Wang, X.D. Hu, S.Y. Zhang, Chem. Commun. (2005) 5580-5582.
[34] B.A. Shairgojray, A.A. Dar, B.A. Bhat, Tetrahedron Lett. 54 (2013) 2391-2394.
[35] Y. Jung, R.A. Marcus, J. Am. Chem. Soc. 129 (2007) 5492-5502.
[36] Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagasawa, Tetrahedron Lett. 45 (2004) 5589-5592.
[37] M.L. Kantam, L. Chakrapani, B.M. Choudary, Synlett (2008) 1946-1948.
[38] A. Bugarin, B.T. Connell, J. Org. Chem. 74 (2009) 4638-4641.