TiCl2/nano-γ-Al2O3 as an efficient catalyst for synthesis of substituted pyrroles under solvent-free conditions at room temperature

Document Type: Articles

Authors

1 Department of Chemistry, College of Science, Yazd University, Yazd, 89195-741, I. R. Iran.

2 Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I. R. Iran.

Abstract

TiCl2/nano-γ-Al2O3 as a new heterogeneous Lewis acid catalyst was synthesized and characterized by FE-SEM, XRD, FT-IR, EDS, XRF, BET and TGA. N-substituted pyrroles have been synthesized via Paal–Knorr reaction in the presence of TiCl2/nano-γ-Al2O3 at room temperature under solvent-free conditions.

Keywords


[1] J. Jusélius, D. Sundholm, Phys. Chem. Chem. Phys. 2 (2000) 2145–2151.
[2] M. Baumann, I.R. Baxendale, S.V. Ley, N. Nikbin, Beilstein J. Org. Chem. 7 (2011) 442–495.
[3] M. Neghabi, A. Behjat, B.F. Mirjalili, L. Zamani, Curr. Appl. Phys. 13 (2013) 302-306.
[4] F. Montrone, S. Santandrea, I. Caruso, R. Gerli, M.E.F. Cesarotti, P.V. Frediani, R. Bassani, J. Int. Med. Res. 28 (2000) 91-100.
[5] P. Sawant, M.E. Maier, Tetrahedron 66 (2010) 9738-9744.
[6] (a) A.W. Trautwein, R.D. Süßmuth, G. Jung, Bioorg. Med. Chem. Lett. 8 (1998) 2381-2384. (b) V.F. Ferreira, M.C.B.V. De Souza, A.C. Cunha, L.O.R. Pereira, M.L.G. Ferreira, Org. Prep. Proced. Int. 33 (2002) 411-454.
[7] (a) G.G. Kleinspehn, J. Am. Chem. Soc. 77 (1955) 1546-1548. (b) E. Fabiano, B.T. Golding, J. Chem. Soc. 1 (1991) 3371-3375. (c) J.M. Hamby, J.C. Hodges, Heterocycl. 35 (1993) 843-850. (d) A. Alberola, A.G. Ortega, M.L. Sadaba, C. Sanudo, Tetrahedron 55 (1999) 6555-6566. (e) I. Elghamry, Synth. Commun. 32 (2002) 897-902.
[8] L. Knorr, Chem. Ber. 17 (1884) 2863-2870.
[9] B.K. Banik, S. Samajdar, I. Banik, J. Org. Chem. 69 (2004) 213-216.
[10] T.N. Danks, Tetrahedron Lett. 40 (1999) 3957-3960.
[11] H.S.P. Rao, S. Jothilingam, H.W. Scheeren, Tetrahedron 60 (2004) 1625-1630.
[12] R. Srinivas, B. Thirupathi, K.P. Kumar, A.N. Prasad, B.M. Reddy, Curr. Org. Chem. 16 (2012) 2482-2489.
[13] M. Banik, B. Ramirez, A. Reddy, D. Bandyopadhyay, B.K. Banik, Org. Med. Chem. Lett. 2 (2012) 1-4.
[14] J. Chen, H. Wu, X. Zhang, W. Su, Tetrahedron Lett. 47 (2006) 5383–5387.
[15] M. Curini, F. Montanari, R. Margarita, Tetrahedron Lett. 44 (2003) 3923–3925.
[16] H.R. Darabi, Chem. Lett. 10 (2012) 369-375.
[17] F.J. Duan, J.C. Ding, H.J. Deng, D.B. Chen, J.X. Chen, M.C. Liu, H.Y. Wu, Chin. Chem. Lett. 24 (2013) 793-796.
[18] H. Veisi, Tetrahedron Lett. 51 (2010) 2109-2114.
[19] Z. Zhang, J. Li, T. Li, Ultrason. Sonochem. 15 (2008) 673-676.
[20] H.R. Darabi, M.R. Poorheravi, K. Aghapoor, A. Mirzaee, F. Mohsenzadeh, N. Asadollahnejad, Y. Balavar, Environ. Chem. Lett. 10 (2012) 5-12.
[21] J. Yang, A. Zheng, M. Zhang, Q. Luo, Y. Yue, C. Ye, X. Lu, F. Deng, J. Phys. Chem. B, 109 (2005) 13124-13131.
[22] B.F. Mirjalili, R. Zare Reshquiyeh, RSC Adv. 5 (2015) 15566-15571.
[23] B.F. Mirjalili, A. Bamoniri, M.A. Mirhoseini, Iran. J. Catal. 6 (2016) 23-27.
[24] B.F. Mirjalili, H. Akrami, Iran. J. Catal. 5 (2015) 129-134.
[25] B.F. Mirjalili, A. Bamoniri, F. Kalantari, Iran. J. Catal. 4 (2014) 273-279.
[26] V.S.V. Satyanarayana, A. Sivakumar, Ultrason. Sonochem. 18 (2011) 917-922.
[27] D. Li, H. Zang, C. Wu, N. Yu, Ultrason. Sonochem. 20 (2013) 1144-1148.