Sonosynthesis, characterization and photocatalytic degradation property of nanoZnO/zeoliteA

Document Type: Articles

Authors

Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran.

Abstract

Nano hexagonal wurtzite ZnO has been prepared on zeoliteA by the sono-chemical method. The zeoliteA was mixed into Zinc gel, after stirring for two days, the mixture was irradiated 30 min by ultrasonic probe. The filtrated composite gel was calcinated at 500°C for 3h in furnace. The produced composite was characterized using X-ray diffraction, FT-IR spectroscopy and field emission scanning electron microscopy. The average crystal size of the nanoZnO and nanoZnO on zeoliteA was determined 53 and 38 nm, respectively. The range of particles size of the nanoZnO on zeoliteA is 30-50 nm. The particles of nanoZnO on the surface of zeoliteA has been dispersed over the zeoliteA framework and the results have shown a higher rate of photodegradation of Congo red (an azo-dye) as compared with bare nanoZnO.

Keywords


[1] G. Guan, T. Kida, K. Kusakabe, K. Kimura, E. Abe, A. Yoshida, Inorg. Chem. Commun. 7 (2004) 618-620.
[2] V. Yu, F. Meteleva, G.F. Roessner, Novikov, J. Photochem. Photobiol. A. 196 (2008) 154–158.
[3] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21 (2009) 4087–4108.
[4] J. H. Pan, H. Dou, Z. Xiong, C. Xu, J. Ma, X. S. Zhao, J. Mater. Chem. 20 (2010) 4512-4528.
[5] H.M. Xiong, J. Mater. Chem. 20 (2010) 4251–4262.
[6] G. Yang, Z. Yanb, T. Xiao, Appl. Surf. Sci. 258 (2012) 8704–8712.
[7] G. Zhou, J. Deng, Mater. Sci. Semicond. Process. 10 (2007) 90–96.
[8] B. Khodadadi, M. Bordbar, Iran. J. Catal. 6 (2016) 37-42.
[9] C.G. Silva, J. Monteiro, R.R.N. Marques, A.M.T. Silva, C. Martínez, M. Canle, J.L. Faria, Photochem. Photobiol. Sci. 12 (2013) 638–644.
[10] K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora, Chemosphere 40 (2000) 433-440.
[11] B. Dindar, S. Icli, J. Photochem. Photobiol. A: Chem. 140 (2001) 263-268.
[12] D. Fu, G. Han, Y. Chang, J. Dong, Mater. Chem. Phys. 132 (2012) 673–681.
[13] A. Nezamzadeh-Ejhieh, M. Bahrami, Des. Water Treat. 55 (2015) 1096–1104.
[14] M. Anpo, T. Shima, Kodamas, Y. Kubokawa, J. Phys. Chem. 91 (1987) 4305–4310.
[15] V. Murugesan, L.S. Sakthive, M.V. Shankar, M. Palanichany, B. Arabindoo. J. Photochem. Photobiol. A 148 (2002) 153–159.
[16] C.W. Tang, Mod. Res. Catal. 02 (2013) 19–24.
[17] L. Vafayi, S. Gharibe, Iran. J. Catal. 5 (2015) 365-371.
[18] S. Danwittayakul, M. Jaisai, T. Koottatep, J. Dutta, Ind. Eng. Chem. Res. 52 (2013) 13629-13636.
[19] H.B. Hadjltaief, M.B. Zina, M.E. Galvez, P.D. Costa, J. Photochem. Photobiol. A 315(2016) 25-33.
[20] R.M. Mohamed, A.A. Ismail, I. Othman, I.A. Ibrahim, J. Mol. Catal. A: Chem. 238 (2005) 151- 157.
[21] A. Nezamzadeh-Ejhieh, S. Khorsandi, J. Ind. Eng. Chem. 20 (2014)937-946.
[22] L. Zhao, Z.C. Liu, Z. F. Liu, Synth. Mater. Tech. 30 (2015) 60-64.
[23] A. Nezamzadeh-Ejhieh, Z. Banan, Desalination 284 (2012) 157–166.
[24] J.H. Lee, K.H. Ko, B.O. Park, J. Cryst. Growth 247 (2003) 119-125.
[25] C-Y. Tsay, K-S Fan, S-H Chen, C-H Tsai, J. Alloys Compd. 495 (2010) 126–130.
[26] M.R. Vaezi, J. Mater. Process. Technol. 205 (2008) 332–337.
[27] M. Khatamian, S. Hashemian, S. Sabaee, Mater. Sci. Semicond. Process 13 (2010) 156–161.
[28] L.J. Wang, Y. Chang, J.S. Li, Y.C. Yang, X.Y. Sun, Mater. Lett. 59 (2005) 3427–3430.
[29] Standard methods for the examination of water and wastewater, 18th ed., American Public Health Association, Washington D.C., 1992.