Synthesis of zinc oxide nanoparticle by zinc acetate precursor and study on its catalytic properties

Document Type: Articles

Author

Department of Chemistry, Center Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

ZnO nanoparticles have been prepared by a simple method in a short period of time. In this synthetic method, the sample was obtained using Zn(CH3COO)2·2H2O and a new template of hexamine salt. Their crystalline structure and morphology were studied by XRD and SEM. The optical properties of the sample were studied by UV–visible spectroscopy. The absorption spectrum of ZnO shows that the optical band gap is 3.02 eV. In this investigation, the photocatalytic degradation of Indigo carmine(IC) in water was studied. The degradation rate is reduced as a function of increase in the initial concentration of IC. The effects of some parameters such as pH and initial concentration of dye were examined.

Keywords


[1] Ü. Özgür, Y.I. Alivov, C. Liu, J. Appl. Phys. 98 (2005) 301-305.
[2] D. Panda, T.Y. Tseng, J. Mater. Sci. 48 (2013) 6849–6877.
[3] P.D. Yang, H.Q. Yan, Adv. Funct. Mater. 12 (2002) 323–331.
[4] J. Safari, S. Gandomi-Ravandi, Z. Akbari, Iranian J. Catal. 3 (2013)149-155.
[5] H. Faghihian, A. Bahranifard, Iran. J. Catal. 1 (2011) 45-50.
[6] M.H. Habibi, E. Askari, Iran. J. Catal. 1 (2011) 41-44.
[7] G.C. Yi, C.R. Wang, Semicond. Sci. Technol. 20 (2005) 522–534.
[8] T. Fujitani, J. Nakamura, Catal. Lett. 56 (1998) 119–124.
[9] E.L. Paradis, A.J. Shuskus, Thin Solid Films 38 (1976) 131–141.
[10] L.C. Tien, P.W. Sadik, Appl. Phys. Lett. 87 (2005) 222106–222108.
[11] U. Koch, A. Fojtik, Chem. Phys. Lett. 122 (1985) 507–510.
[12] T. Masaki, S.J. Kim, H. Watanabe, J. Ceram. Process Res. 4 (2003) 135–139.
[13] L. Chen., Z.Q. Chen., X.Z Shang, Solid State Commun. 137 (2006) 561–565.
[14] Z.L. Wang, J. Phys. Condens. Matter. 16 (2004) 829–858.
[15] H.Z. Wu, D.J. Qiu, Y.J. Cai, J. Cryst. Growth 245 (2002) 50–55.
[16] L.L. Yang, J.H. Yang, X.Y. Liu, J. Alloys. Compd. 463 (2008) 92–95.
[17] L. Spanhel, M.A. Anderson, J. Am. Chem. Soc. 113 (1991) 2826–2833.
[18] E.A. Meulenkamp, J. Phys. Chem. B 102 (1998) 5566–5572.
[19] Y.L. Wu, AI. Y. Tok, F.Y.C. Boey, Appl. Surf. Sci. 253 (2007) 5473–5479.
[20] L. Guo, S.H. Yang, C.L. Yang, Appl. Phys. Lett. 76 (2000) 2901–2903.
[21] Y.H. Tong, Y.C. Liu, S.X. Lu, J. Sol. Gel. Sci. Technol. 30 (2004) 157–161.
[22] Q.S. Kong, X.L. Wu, Acta. Phys. Chim. Sin. 24 (2008) 2179.
[23] M.E. Fragalà, Y. Aleeva, G. Malandrino, Thin Solid Films 519 (2011) 7694–7701.
[24] G. Kortum, Reflectance Spectroscopy, Springer-Verlag, New York, 1969.
[25] G. Cao, L.K. Rabenberg, C.M. Nunn, T.E. Mallouk, Chem. Mater. 3 (1991) 149-156.
[26] S.B. Khan, M. Faisal, Talanta 85 (2011) 943–949
[27] P. Muthukumara, T.M. Selvakumarib, S. Ganesan, Dig. J. Nanomater Bios. 5 (2010) 635-639.
[28] F.I. Ezema, U.O.A. Nwankwo, Dig. J. Nanomater Bios. 5 (2010) 981-987.
[29] N.F. Hamedania, A. Mahjouba, A. Khodadadib, Y. Mortazavic, Sensors Actuators B 156 (2011) 737-742.
[30] N. Talebian, S.M. Amininezhad, M. Doudi, J. Photochem. Photobiol. B 120 (2013) 66-73.
[31] G. Bandekar, N.S. Rajurkar, I.S. Mulla, U.P. Mulik, Appl. Nanosci. 4 (2014)199-208.
[32] C. Shiyan, Z. Bihui, H. Weili, Carbohydr. Polymers 92 (2013) 1953-1959.
[33] M. Thirumavalavan, F. Yang, J. Lee, Environ. Sci. Pollut. Res. 20 (2013) 5654-5664.
[34] T. Thilagavathi, D. Geetha, Appl. Nanosci. 3 (2013) 141-144.
[35] G. Dutta, J. Nanobiotechnol. 10 (2012) 29-35.