Catalytic oxidation of airborne toluene by using copper oxide supported on a modified natural diatomite

Document Type: Articles


1 Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.

2 Research Center for Environmental Health Technology, Iran University of Medical Sciences, P.O Box: 14665-354, Tehran, Iran.


The catalytic oxidation of toluene over copper oxide supported on natural diatomite was investigated. The catalyst was prepared by the wet impregnation method and characterized by using the Brunauer Emmett Teller (BET), field emission Scanning Electron Microscopy (FESEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and Temperature-programmed reduction (TPR) analysis. The highest catalytic performance for airborne toluene oxidation was obtained at 14 wt% Cu loading. The toluene conversion at 270°C and 380°C, were 50% and 90%, respectively. According to the results of GC/MS and formation the CO2 in effluent gas, no intermediates such as CO or other hydrocarbons were detected and the selectivity towards CO2 was almost 100%.


[1] S.R. Azimi Pirsaraei, H. Asilian Mahabadi, A. Jonidi Jafari, M.R. Mehrasbi, Chem. J. 1 (2015) 116-123.
[2] L. Bo, J. Liao, Y. Zhang, X. Wang, Q. Yang, Front. Environ. Sci. Eng. 7 (2013) 395-402.
[3] X. Li, L. Wang, Q. Xia, Z. Liu, Z. Li, Catal. Commun. 14 (2011) 15-19.
[4] A. Barzegar Shangol, S.B. Mortazavi, H. Asilian, H. Kazemian, Sci. J. Rev. 3 (2014) 345-52.
[5] S.M. Saqer, D.I. Kondarides, X.E. Verykios, Appl. Catal B 103 (2011) 275–286.
[6] C.H. Wang, S.S. Lin, C.L. Chen, H.S. Weng, Chemosphere 64 (2006) 503-509.
[7] G.S. Pozan, Z. Özçelik, I. Boz, Chem. Eng. J. 162 (2010) 380–387.
[8] C.J. Yue, S.S. Yao, L.P. Gu, J. Porous Mater. 22 (2015) 455–464.
[9] Q. Zhu, Y. Zhang, F. Zhou, F. Lv, Z. Ye, F. Fan, P.K. Chu, Chem. Eng. J. 171 (2011) 61-68.
[10] S. Dehestani Athar, H. Asilian Mahabadi, J. Health. Scope 1 (2012) 52-56.
[11] S.R. Azimi Pirsaraei, H. Asilian Mahabadi, A. Jonidi Jafari, Z. Farahmandkia, J. Taran, Chem. J. 4 (2015) 144-150.
[12] H. Liang, S. Zhou, Y. Chen, F. Zhou, C. Yan, J. Taiwan I. Chem. Eng. 49 (2015) 105-112.
[13] A.P. Moura, L.S. Cavalcante, J.C. Sczancoski, D.G. Stroppa, E.C. Paris, A.J. Ramirez, J.A. Varela, E. Longo, Adv. Powder Technol. 21 (2010) 197–202.
[14] X. Du, J. Huang, Y. Feng, Y. Ding, Chin. J. Catal. 37 (2016) 123–134.
[15] M.A. Monshi, M. Foroughi, A. Monshi, World J. Nanosci. Eng. 2 (2012) 154-160.
[16] V.V. Drits, J. Srodon, D.D. Eberl, Clays Clay Miner. 45 (1997) 461-475.
[17] J.L. Cao, G.S. Shao, T.Y. Ma, Y. Wang, T.Z. Ren, S.H. Wu, Z.Y. Yuan, J. Mater. Sci. 44 (2009) 6717-6726.
[18] U.R. Pillai, S. Deevi, Appl. Catal. B 64 (2006) 146-151.
[19] J.H. Park, Y.S. Seo, H.S. Kim, Il-K. Kim, Korean J. Chem. Eng. 28 (2011) 1693-1697.
[20] J. Van Durme, J. Dewulf, W. Sysmans, C. Leys, H. Van Langenhove, Chemosphere 68 (2007) 1821-1829.
[21] Y. Wu, Y. Lu, C. Song, Z. Ma, S. Xing, Y. Gao, Catal. Today 201 (2013) 32-39.
[22] U. Menon, V.V. Galvita, G.B. Marin, J. Catal. 283 (2011) 1-9.
[23] U. Menon, H. Poelman, V. Bliznuk, V.V. Galvita, D. Poelman, G.B. Marin, J. Catal. 295 (2012) 91-103.
[24] C. Doornkamp, V. Ponec, J. Mol. Catal. A: Chem. 162 (2000) 19-32.