PbWO4 nanoparticles: A robust and reusable heterogeneous catalyst for the synthesis of benzopyranopyridines under ultrasonic irradiation

Document Type: Articles

Authors

1 Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, I. R. Iran.

2 Young Researchers and Elites Club, Kashan Branch, Islamic Azad University, Kashan, Iran.

3 Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Abstract

An efficient four-component synthesis of benzopyranopyridines is described by one-pot condensation of salicylaldehydes, thiols and 2 equiv of malononitrile with nano-PbWO4 as a robust and reusableheterogeneous catalyst under ultrasonic irradiation. Lead tungstate (PbWO4) nanostructures have been synthesized via a sonochemical method based on the reaction between lead (II) nitrate and sodium tungstate dihydrate in an aqueous solution. Some advantages of this protocol include use of simple and readily available starting materials, rapid assembly of medicinally privileged heterocyclic molecules, reusability of the catalyst, low amount of the catalyst and application of the sonochemical methodology as an efficient technique and innocuous means of activation in synthetic chemistry.

 

Keywords


[1] P.C. Unangst, T. Capiris, D.T. Connor, T.G. Heffner, R.G. MacKenzie, S.R. Miller, T.A. Pugsley, L.D. Wise, J. Med. Chem. 40 (1997) 2688-2693.
[2] H.M. Hosni, M.M. Abdulla, Acta Pharm. 58 (2008) 175-186.
[3] K. Goto, M. Terasawa, Y. Maruyama, Int. Archs. Allergy Appl. Immun. 59 (1979) 13-19.
[4] K. Ukawa, T. Ishiguro, H. Kuriki, A. Nohara, Chem. Pharm. Bull. 33 (1985) 4432-4437.
[5] D.R. Anderson, S. Hegde, E. Reinhard, L. Gomez, W.F. Vernier, L. Lee, S. Liu, A. Sambandam, P.A. Snider, L. Masih, Bioorg. Med. Chem. Lett. 15 (2005) 1587-1590.
[6] L.V. Frolova, I. Malik, P.Y. Uglinskii, S. Rogelj, A. Kornienko, I.V. Magedov, Tetrahedron Lett. 52 (2011) 6643-6645.
[7] I.A. Khan, M.V. Kulkarni, M. Gopal, M.S. Shahabuddin, C.M. Sun, Bioorg. Med. Chem. Lett. 15 (2005) 3584-3587.
[8] H.G. Pars, F.E. Granchelli, R.K. Razdan, J.K. Keller, D.G. Teiger, F.J. Rosenberg, L.S. Harris, J. Med. Chem. 19 (1976) 445-454.
[9] L.J. Núñez-Vergara, J.A. Squella, P.A. Navarrete-Encina, E. Vicente-García, S. Preciado, R. Lavilla, Curr. Med. Chem. 18 (2011) 4761-4785.
[10] S. Mishra, R. Ghosh, Synth. Commun. 42 (2012) 2229-2244.
[11] N.M. Evdokimov, A.S. Kireev, A.A. Yakovenko, M.Y. Antipin, I.V. Magedov, A. Kornienko, Tetrahedron Lett. 47 (2006) 9309-9312.
[12] N.M. Evdokimov, A.S. Kireev, A.A. Yakovenko, M.Y. Antipin, I.V. Magedov, A. Kornienko, J. Org. Chem. 72 (2007) 3443-3453.
[13] V.A. Osyanin, D.V. Osipov, Y.N. Klimochkin, Tetrahedron 68 (2012) 5612-5618.
[14] J. Safaei-Ghomi, M. Kiani, A. Ziarati, H. Shahbazi-Alavi, J. Sulfur Chem. 35 (2014) 451-457.
[15] D. Chen, G. Shen, K. Tang, Z. Liang, H. Zheng, J. Phys. Chem. B 108 (2004) 11280-11284.
[16] R. Talebi, J. Mater. Sci. Mater. Electron. 27 (2016) 10770–10774.
[17] C. Yu, F. Cao, X. Li, G. Li, Y. Xie, J.C. Yu, Q. Shu, Q. Fan, J. Chen, Chem. Eng. J. 219 (2013) 86-95.
[18] C. An, K. Tang, G. Shen, C. Wang, Y. Qian, Mater. Lett. 57 (2002) 565-568.
[19] L. Huo, Y. Chu, Mater. Lett. 60 (2006) 2675-2681.
[20] G. Wang, C. Hao, Y. Zhang, Mater. Lett. 62 (2008) 3163-3166.
[21] G. Zhou, S. Wang, M. Lu, Z. Xiu, H. Zhang, Mater. Chem. Phys. 93 (2005) 138-141.
[22] J. Geng, J.J. Zhu, D.J. Lu, H.Y. Chen, Inorg. Chem. 45 (2006) 8403-8407.
[23] A. Phuruangrat, T. Thongtem, S. Thongtem, Curr. Appl. Phys. 10 (2010) 342-345.
[24] J. Safaei-Ghomi, H. Shahbazi-Alavi, M. R. Saberi-Moghadam, A. Ziarati, Iran. J. Catal. 4 (2014) 289-294.
[25] J. Safaei-Ghomi, M. Asgari-Kheirabadi, H. Shahbazi-Alavi, A. Ziarati, Iran. J. Catal. 6 (2016) 319-324.