Thermodynamic study of an effective catalytic system, hydrogen peroxide and methyltrioxorhenium

Fatemeh Niroomand Hosseini*

Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

Received 19 February 2014; received in revised form 14 April 2014; accepted 30 April 2014

ABSTRACT

The thermodynamic of the known and very effective catalytic system, hydrogen peroxide (H$_2$O$_2$) and methyltrioxorhenium (MTO) is studied in different solvents using UV-Visible spectroscopic method. The thermodynamic parameters (ΔG, ΔH and ΔS) for two equilibrium reactions, MTO + H$_2$O$_2$ ⇌ A + H$_2$O and A + H$_2$O$_2$ ⇌ B.H$_2$O ([MeRe(O)$_2$(O$_2$)]; B.H$_2$O, [MeRe(OH$_2$(O)(O$_2$)$_2$]) are determined. The obtained free energies of the reactions depend on dielectric constants of solvent, which are explained by Onsager’s reaction field theory.

Keywords: Methyltrioxorhenium, Hydrogen peroxide, Thermodynamic study.

1. Introduction

In 1991, Herrmann and co-workers reported methyltrioxorhenium (VII) (CH$_3$ReO$_3$, MTO) as an oxidation catalyst for the epoxidation of alkenes with hydrogen peroxide as the terminal oxidant [1]. For more than 3 decades, MTO and its derivatives have found many interesting applications in synthesis, catalysis and material chemistry [2-7]. The MTO/H$_2$O system has been investigated in a variety of reactions mostly oxidation of substrates such as alkenes [8-10], conjugated dienes [11], aromatic [12], sulfur [13], and phosphine [14] compounds. The importance of MTO/H$_2$O system is due to its ease of synthesis, availability, stability and high solubility of MTO in many polar and non-polar solvents and also non-hazardous byproduct of hydrogen peroxide formed during the oxidation process, i.e. H$_2$O.

On the basis of experimental [15-18] and theoretical [19-21] studies, it was shown that in solution, on treatment of methyltrioxorhenium in water or organic solvents with hydrogen peroxide, MTO undergoes peroxidation to afford mono- and bisperoxo complexes that are in equilibrium with the initial MTO (Scheme 1). In MTO/H$_2$O$_2$ system used for oxygen transfer to the olefinic double bond, the involved active species are monoperoxo (A, [MeRe(O)$_2$(O$_2$)]) and bisperoxo (B.H$_2$O, [MeRe(OH$_2$(O)(O$_2$)$_2$)]) complexes.

Although several experimental and theoretical studies about different aspects of MTO have been published [20,22,23], it is surprising that the information about the thermodynamics of the reactions presented in the MTO/H$_2$O$_2$ system in different solvents is scarce.

In this report we have investigated the thermodynamic of the reactions shown in Scheme 1 in different solvents. The results obtained in the present work are particularly significant because of the importance of MTO/H$_2$O$_2$ system in catalytic chemistry. These parameters also allow the chemists to optimize the best conditions needed for an ideal oxidation catalytic system.

2. Experimental

The compound methyltrioxorhenium (MeReO$_3$ or MTO) was prepared as reported [24]. Equilibrium studies were carried out by using a Perkin Elmer Lambda 25 spectrophotometer with temperature control using an EYELA NCB-3100 constant temperature bath. Solutions of hydrogen peroxide were standardized iodometrically and their concentrations were determined by standard method. Typically, a 3.6 mM solution of the MTO in solvent contained in a quartz cuvette with a 1 cm path length was treated with successive aliquots of a known concentration solution of H$_2$O$_2$ in the same solvent at 25 °C.
The values of equilibrium constants were determined by fitting the equilibrium absorbances to Eq. 1 [25] by the method of non-linear least squares using KaleidaGraph program.

\[\bar{\varepsilon} = \frac{\text{Abs} - \varepsilon_A}{[\text{MTO}]_T} = \frac{\varepsilon_A K_1 [\text{H}_2\text{O}_2] + \varepsilon_B K_2 [\text{H}_2\text{O}_2]^2}{1 + K_1 [\text{H}_2\text{O}_2] + K_2 [\text{H}_2\text{O}_2]^2} \]

Here, Abs is the absorbance of a solution at equilibrium; [MTO]_T is total concentration of MTO in solution, \(\varepsilon_A \) and \(\varepsilon_B \) are molar absorptivities for A and \(\text{B.H}_2\text{O} \) species, respectively at corresponding wavelength; \(K_1 \) and \(K_2 \) are equilibrium constants for the reactions presented in solution (Scheme 1) and \([\text{H}_2\text{O}_2] \) represents the equilibrium \(\text{H}_2\text{O}_2 \) concentration. The calculated equilibrium constants for the reaction shown in Scheme 1 are collected in Table 1. The same method was used at other temperatures and solvents and thermodynamic parameters were obtained from the van’t Hoff equation (Eq. 2).

\[\ln K = \frac{-\Delta H}{R} + \frac{\Delta S}{R} \]

3. Results and Discussion

3.1. Equilibrium Studies

On mixing of MTO in water (or organic solvents) with hydrogen peroxide, a yellow solution is obtained according to Scheme 1 that is more intense at higher peroxide concentrations. The absorbance-concentration titration diagram is shown in Fig. 1. As is clear from the Figure, upon increasing of more \(\text{H}_2\text{O}_2 \), the absorbance continues to rise until finally a plateau is reached, suggesting the existence of equilibrium in solution. The UV spectral scans at various \(\text{H}_2\text{O}_2 \) concentrations are illustrated in Fig. 2.

The absorbance (at 360 nm)–[\(\text{H}_2\text{O}_2 \)] data were analyzed based on two equilibriums (Scheme 1) presented in solution. The nonlinear least-squares fit of Abs-[\(\text{H}_2\text{O}_2 \)] data according to Eq. 1 gave the values of the equilibrium constants \(K_1 \) and \(K_2 \) and the data are collected in Table 1. The binding constant for the second equilibrium in MTO/\(\text{H}_2\text{O}_2 \) system (\(K_2 \)) is considerably larger than that obtained for the first step (\(K_1 \)). For example in acetone at 25 °C, the values of \(K_1 \) and \(K_2 \) are 550 and 2007 L mol\(^{-1} \), respectively. The same behavior was observed in other solvents and temperatures.

In order to have a better understanding of the thermodynamics of equilibrium reactions between MTO and \(\text{H}_2\text{O}_2 \), it is useful to consider the enthalpic and entropic contributions to these reactions. The \(\Delta H \) and \(\Delta S \) values for the reactions in different solvents were evaluated from the corresponding temperature data by applying a linear \(\ln K_1 \) (or \(\ln K_2 \)) least squares analysis according to the van’t Hoff equation. Plots of \(\ln K \) vs. \(1/T \) for the MTO/\(\text{H}_2\text{O}_2 \) system at different solvents were linear for all cases studied (Fig. 3). The enthalpies and entropies of equilibrium reactions were determined in the usual manner from the slopes and
Different solvent parameters have been proposed over the years to give various solvent properties [26]. They have been used to explain discrepancies observed between various properties of a given solute as the solvents are changed.

In many cases, it has been demonstrated that solute properties are dependent on more than one solvent parameter [27,28]. A method was applied for the treatment of the results in which the obtained free energies of the reactions shown in Scheme 1 in different solvents were first correlated separately with each one of the solvent parameters to evaluate them for their ability to provide a reasonable explanation (the solvents used and their parameters are given in Table 2). Then, to give an independent interpretation of the free energies in different solvents, the linear solvation energy relationship (LSER) multi-parameter method, based on that of Kamlet et al. [29,30] was performed using two solvent parameters according to multi-parametric correlations expressed by:

$$\Delta G = \Delta G^0 + aX_1 + bX_2 \quad (3)$$

where ΔG^0 is the value of ΔG in a solvent for which the properties X_i are zero for all i values, X_1 and X_2 are different solvent parameters, and a and b are the coefficients of X_1 and X_2, respectively, which can be obtained by multiple linear regression analysis.

The change of the free energy values for the reactions studied in this work was correlated at first with each of the solvent parameters as follows: ε_r, dielectric constant of the solvent; $E_r(30)$, its polarity; DN_1, donor number of solvent; a, the hydrogen bond donation (HBD) ability; β, its hydrogen bond acceptance (HBA) or electron pair donation ability to form a coordinative bond and π^*, its polarity/polarizability parameter. For ΔG of two reactions presented in MTO/H$_2$O$_2$ system (Scheme 1), the best correlation was found for ε_r.

Table 1. Equilibrium constants and thermodynamic parameters for the formation of compounds A and B.H$_2$O according to the reactions shown in Scheme 1 in different solvents.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>K_1 (L mol$^{-1}$)</th>
<th>ΔH_1/ kJmol$^{-1}$</th>
<th>ΔS_1/ JK$^{-1}$mol$^{-1}$</th>
<th>ΔG_1/ kJmol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 °C</td>
<td>20 °C</td>
<td>25 °C</td>
<td>30 °C</td>
</tr>
<tr>
<td>Water</td>
<td>150.0</td>
<td>33.4</td>
<td>17.7</td>
<td>10.2</td>
</tr>
<tr>
<td>Acetone</td>
<td>1930.0</td>
<td>999.8</td>
<td>550.0</td>
<td>420.1</td>
</tr>
<tr>
<td>THF</td>
<td>2859.6</td>
<td>1389.1</td>
<td>755.2</td>
<td>599.7</td>
</tr>
<tr>
<td>CH$_3$OH</td>
<td>829.8</td>
<td>435.1</td>
<td>281.8</td>
<td>228.4</td>
</tr>
<tr>
<td>CH$_3$CN</td>
<td>725.4</td>
<td>340.1</td>
<td>219.4</td>
<td>123.9</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>3307.7</td>
<td>1609.3</td>
<td>915.5</td>
<td>716.2</td>
</tr>
</tbody>
</table>

aEstimated errors in K values are ± 7%.
bAt 298 K.
Table 2. The property parameters of solvents.a

<table>
<thead>
<tr>
<th>Solvent</th>
<th>ε b</th>
<th>$E_r(30)$ c</th>
<th>DN d</th>
<th>α e</th>
<th>β e</th>
<th>π^* e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>78.5</td>
<td>63.1</td>
<td>18.0</td>
<td>1.17</td>
<td>0.47</td>
<td>1.09</td>
</tr>
<tr>
<td>Acetone</td>
<td>20.6</td>
<td>42.2</td>
<td>17.0</td>
<td>0.08</td>
<td>0.43</td>
<td>0.71</td>
</tr>
<tr>
<td>THF</td>
<td>7.3</td>
<td>37.4</td>
<td>20.0</td>
<td>0.00</td>
<td>0.55</td>
<td>0.58</td>
</tr>
<tr>
<td>MeOH</td>
<td>32.7</td>
<td>55.4</td>
<td>30.0</td>
<td>0.98</td>
<td>0.66</td>
<td>0.60</td>
</tr>
<tr>
<td>CH$_3$CN</td>
<td>36</td>
<td>45.6</td>
<td>30.0</td>
<td>1.98</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>6</td>
<td>38.1</td>
<td>17.1</td>
<td>0.00</td>
<td>0.45</td>
<td>0.55</td>
</tr>
</tbody>
</table>

aData from ref. [26].

bε = dielectric constant.
cPolarity.
dDonor number.
eKamlet–Taft parameters.

Further improvement, with the following form:

$$
\Delta G = \Delta G^0 + a\varepsilon + bX_2 \quad (X_2 = E_r(30), \text{DN}, \alpha, \beta \text{ and } \pi^*)
$$

Therefore, from the results presented in Table 3, it can be concluded that the dielectric constant of the solvent is the most important parameter in this system ($R^2 = 0.98$ for ΔG versus ε plot, Fig. 4). Water, with the highest dielectric constant, shows the negative smallest

Table 3. Parametric solvent coefficients of free energy of the reactions in the MTO/H$_2$O$_2$ system obtained from the different multi-parametric equations (LSER).a

<table>
<thead>
<tr>
<th>LSER equation</th>
<th>MTO+H$_2$O$_2$ ⇄ A+H$_2$O</th>
<th>A+H$_2$O$_2$ ⇄ B.H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔG^0</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

| $\Delta G = \Delta G^0 + a\varepsilon + bX_2$ |

| $\Delta G = \Delta G^0 + a\varepsilon + bX_2$ |

aValues in parentheses are standard deviations.
values of ΔG for both reactions studied in the present work and ethyl acetate with the lowest dielectric constant shows the negative largest ΔG values.

It is possible to use Onsager’s reaction field model [31, 32] for the interpretation of solvent effects by considering that the free energy change for the reactions presented in MTO/H$_2$O$_2$ system may be described by a one-parameter equation that contains the term for the dielectric constant. The reaction field model expresses solvation energy as shown in the following equation:

$$
\Delta E_{sol} = \frac{2\mu^2}{r^3} \left(\epsilon_r - 1 \right) \left(\epsilon_r + 2 \right) - \frac{n^2 - 1}{n^2 + 2}
$$

where ϵ_r and n are the dielectric constant and the refractive index of the solvent, respectively. μ and r also represent the dipole moment and the diameter of the solute, respectively. Since the refractive indexes are constant ($n = 1.4$) for all of the solvents, the second term of parenthesis will be constant. Therefore, solvation energy depends only on the parentheses term and will be a function of dielectric constant. According to Table 1 and Fig. 4, when the solvent has an insignificant and small ϵ_r, the free energy changes of solvation for the reactants and the product are unimportant and the solvent molecules are not tightly bonded to the reactants and the products. Therefore, the solvent molecules are not closely associated with the reactants or with the products. It means the reactivity of the reactants in this solvent is more than the other solvent and therefore the equilibrium constant of the reaction is larger (i.e. more negative ΔG value).

In contrast, in the polar solvent having large ϵ_r, the solvation energy becomes much larger according to Onsager’s reaction field model, resulting less negative ΔG value and the reactants and the products are tightly trapped by the solvent molecules. Hence, the solvent molecules are well aligned with the reactants and with the products.

4. Conclusions

The two equilibrium reactions presented in the MTO/H$_2$O$_2$ system were studied in different solvents using UV-vis spectroscopy. The thermodynamic parameters for the reactions MTO + H$_2$O$_2$ \rightleftharpoons A + H$_2$O and A + H$_2$O$_2$ \rightleftharpoons B.H$_2$O$_2$ were determined and solvent effects on these parameters were investigated. It was found that the dielectric constant of the solvent is the most important parameter in this system. The values of free energies correlate with dielectric constants of the solvents. Water, with the highest dielectric constant, showed the largest values of ΔG for both reactions studied in the present work and ethyl acetate with the lowest dielectric constant showed the smallest ΔG values.

Acknowledgment

Financial support of the Shiraz Branch, Islamic Azad University, Iran (Grant No. 90.480) is gratefully acknowledged.

References