Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film

Document Type: Articles


1 Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.

2 Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.

3 Department of Chemistry, Payame Noor University, Iran.

4 Faculty of Chemistry, K. N. Toosi University of Technology, Tehran, Iran.


In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polymer backbone to obtain Ni-FGO-POAP/ graphite electrode. Surface morphology of composite was characterized by scanning electron microscopy. The electrochemical performance of Ni-FGO-POAP composite electrodes was investigated by cyclic voltammetry and Chronoamperometry. Compared with Ni- POAP, a Ni-FGO-POAP electrode shows a higher catalytic performance in the electrocatalytic oxidation of ethanol. Under the CA regimes the reaction followed a Cottrellian behavior. Developing a simple and green route for synthesis of FGO-POAP and long life cycle and stability of nanocomposite are main important factor in presented work.


[1] H. Mohammad Shiri, A. Ehsani, J. Colloid interface Sci. 484 (2016) 70-76.
[2] A. Ehsani, H. Mohammad Shiri, E. Kowsari, R. Safari, J. Torabian, S. Kazemi, J. Colloid interface Sci. 478 (2016) 181-187.
[3] M. Naseri, L. Fotouhi, A. Ehsani, H. Mohammad Shiri, J. Colloid Interface Sci. 484 (2016) 308-313.
[4] J.S. Wu, W. Pisula, K. Mullen, Chem. Rev. 107 (2007) 718-747.
[5] E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277–2282.
[6] M. Naseri, L. Fotouhi, A. Ehsani, S. Dehghanpour, J. Colloid Interface Sci. 484 (2016) 314-319.
[7] X. Wang, L.J. Zhi, K. Mullen, Nano Lett. 8 (2008) 323-327.
[8] H. Heli, H. Yadegari, A. Jabbari, Mater. Chem. Phys. 134 (2012) 21–25.
[9] J. Shabani-Shayeh, A. Ehsani, MR. Ganjali,  P. Norouzi, B. Jaleh, Appl. Surf. Sci. 353 (2015) 594-598.
[10] N. Salehifar, J. Shabani Shayeh, S.O. Ranaei Siadat, K. Niknam, A. Ehsani, S. Kazemi Movahhed, RSC Adv. 5 (2015) 96130-96137.
[11] J. Shabani-Shayeh, A. Ehsani, A. Nikkar, P. Norouzi, M.R. Ganjali, M. Wojdyla, New. J. Chem, 39 (2015) 9454-9460.
[12] H. Mohammad Shiri, A. Ehsani , J. Shabani Shayeh, RSC Adv. 5 (2015) 91062–91068.
[13] A. Ehsani, E. Kowsari, M. Dasti Najafi, R. Safari, H. Mohammad Shiri, J. Colloid Interface Sci. 500 (2017) 315-320.
[14] E. Kowsari, A. Zare, V. Ansari, Int. J. Hydogen Energy 40 (2015) 13964-13978.
[15] C. Xu, X. Liu, J. Cheng, K. Scott. J. Power Sources 274 ( 2015) 922-927.
[16] A.A. Mikhaylova, O.A. Khazova, V.S. Bagotzky, J. Electroanal. Chem. 480 (2000) 225-232.
[17] P.Gajendran, R. Saraswathi. J. Solid State Electrochem. 17 (2013) 2741-2747.
[18] J.B. Raoof, S.R. Hosseini, S. Rezaee, J. Mol. Liquid 200 (2014) 196-204.
[19] C. Fan, D.L. Piron, A. Sleb, P. Paradis, J. Electrochem. Soc. 141 (1994) 382-387.
[20] I.A. Raj, K.I. Vasu, J. Appl. Electrochem. 20 (1990) 32-38.
[21] M.A. Casadei, D. Pletcher, Electrochim. Acta 33 (1988) 117-120.
[22] R. Ojani, J.B. Raoof, S. Fathi, Electrochim. Acta. 54 (2009) 2190-2196.
[23] W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339-1339.
[24] M.H. Sheikh-Mohseni, A. Nezamzade