Adsorptive desulfurization of oil derivatives using nanostructured Mg-Al layered double hydroxides: Experimental design and modeling

Document Type: Articles


Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.


This study focuses on the application of nanostructured Mg-Al layered double hydroxide as a promising adsorbent in desulfurization of dibenzothiophene, an aromatic sulfur bearing compound from gasoil model. The Mg-Al LDH was synthesized by a co-precipitation method and characterized by FT-IR, XRD, EDX and SEM. The XRD and FT-IR approved the layered structure and crystalline form of the adsorbent, the EDX showed the material content in synthesized adsorbent and SEM approved the nanostructure of the synthesized LDH. Four factors were selected as effective factors of desulfurization process. The optimum state of the factors, including calcination temperature of Mg-Al LDH, dibenzothiophene concentration, adsorbent amount and treatment times selected as the 600 ˚C, 50 ppm, 0.1 mg and 120 min, respectively and the highest desulfurization percentage reached to 73.24%.


[1] A. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid, Chem. Commun. (2001) 2494-2495.
[2] H. Lü, J. Gao, Z. Jiang, F. Jing, Y. Yang, G. Wang, J. Catal. 239 (2006) 369-375.
[3] A.J. Hernández-Maldonado, R.T. Yang, AIChE. J. 50 (2004) 791-801.
[4] P.S. Kulkarni, C.A.M. Afonso, Green Chem. 12 (2010) 1139-1149.
[5] K.G. Knudsen, B.H. Cooper, H. Topsøe, Appl. Catal. A 189 (1999) 205-215.
[6] A. Stanislaus, A. Marafi, M.S. Rana, Catal. Today 153 (2010) 1-68.
[7] H. Mei, B. Mei, T.F. Yen, Fuel 82 (2003) 405-414.
[8] D. Wang, E.W. Qian, H. Amano, K. Okata, A. Ishihara, T. Kabe, Appl. Catal. A 253 (2003) 91-99.
[9] K. Yazu, Y. Yamamoto, T. Furuya, K. Miki, K. Ukegawa, Energy Fuels 15 (2001) 1535-1536.
[10] Y.L. Yun Zhi, Q. Zhang, H. Wang, Langmuir 26 (2010), 15546–15553.
[11] D.G. Evans, R.C. Slade, Structural Aspects of Layered Double Hydroxides, 1st Ed., Springer, Berlin, 2006.
[12] Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 128 (2006) 4872-4880.
[13] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 652-664.
[14] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology, 3rd Ed., John Wiley & Sons, New Jersey, 2016.
[15] N.S. El-Gendy, H.N. Nassar, S.S. Abu Amr, J. Pet. Sci. Technol. 32 (2014) 1669-1679.
[16] V. Gunaraj, N. Murugan, J. Mater. Process Technol. 88 (1999) 266-275.
[17] B.S. Zakaria, H.N. Nassar, S.S.A. Amr, N.S. El-Gendy, Pet. Sci. Technol. 33 (2015) 880-892.
[18] C.A. Basha, R. Saravanathamizhan, P. Manokaran, T. Kannadasan, C.W. Lee, Ind. Eng. Chem. Res 51 (2012) 2846-2854.
[19] M.B. Kasiri, H. Aleboyeh, A. Aleboyeh, Environ. Sci. Tech. 42 (2008) 7970-7975.
[20] O. Kempthorne, The Design and Analysis of Experiments, 1st Ed., John Wiley & Sons, New Jersey (1952).
[21] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 628-641.
[22] M. Nosuhi, A. Nezamzadeh-Ejhieh, Electrochim. Acta 223 (2017) 47-62.