Synthesis of the biologically active henna based benzochromene derivatives using ionic liquid functionalized SBA-15 as a nanoreactor

Document Type: Articles

Authors

1 Department of Chemistry, Alzahra University, Vanak Square, Tehran, Iran, P.O. Box 1993893973.

2 School of Chemistry, College of Science, University of Tehran, Tehran, Iran.

3 Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.

Abstract

SBA-15 was prepared and then functionalized with N-methyl-N’-propyltrimethoxysilyl imidazolium chloride as ionic liquid moiety. The ionic liquid functionalized SBA-15 (SBA-IL) was characterized by different analytical techniques including FT-IR, N2 adsorption-desorption, TGA and SEM image. According to the obtained results it was found that the organic groups were grafted onto the pores of SBA-15 because its pore size and BET surface dropped after modification step. Then, it was used as an efficient nanoreactor in the synthesis of biologically active henna based benzochromene derivatives under solvent‐free conditions. Consequently, the catalyst acted efficiently under solvent free system and gave the products in high yields and short reaction times. Some of the obtained products exhibited antibacterial activities as well as tetracycline.

Keywords


[1] G. Brahmachari, ACS Sustainable Chem. Eng. 3 (2015) 2058-2066.
[2] A. Ashnagar, A. Shiri, ‎Int. J. Chem. Tech. Res. 3 (2011) 1941-1944.
[3] R. Jelly, S.W. Lewis, C. Lennard, K.F. Lim, J. Almog, Chem. Commun. 2008 (2008) 3513-3515.
[4] Y.M. Hijji, B. Barare, Y. Zhang, Sens. Actuators B 169 (2012) 106-112.
[5] C.E. Dalgliesh, J. Am. Chem. Soc. 71 (1949) 1697-1702.
[6] N.M. Rahmoun, Z. Boucherit-Otmani, K. Boucherit, M. Benabdallah, D. Villemin, N. Choukchou-Braham, Med. Mal. Infect. 42 (2012) 270-275.
[7] I. Hueso-Falcón, Á. Amesty, P. Martín, M. López-Rodríguez, L. Fernández-Pérez, A. Estévez-Braun, Tetrahedron 70 (2014) 8480-8487.
[8] R.G. Fiorot, J.F. Allochio Filho, T.M.C. Pereira, V. Lacerda Jr, R.B. dos Santos, W. Romão, S.J. Greco, Tetrahedron Lett. 55 (2014) 4373-4377.
[9] V. Srinivas, V.R. Rao, Synth. Commun. 42 (2012) 388-393.
[10] A. Dömling, Chem. Rev. 106 (2006) 17-89.
[11] T. Ahmadi, G. Mohammadi Ziarani, P. Gholamzadeh, H. Mollabagher, Tetrahedron: Asymmetry 28 (2017) 708-724.
[12] H. Bienayme, K. Bouzid, Angew. Chem. Int. Ed. 37 (1998) 2234-2237.
[13] B.B. Touré, D.G. Hall, Chem. Rev. 109 (2009) 4439-4486.
[14] L. Weber, Curr. Med. Chem. 9 (2002) 2085-2093.
[15] L.F. Tietze, A. Modi, Med. Res. Rev. 20 (2000) 304-322.
[16] R. Echemendía, A.F. de La Torre, J.L. Monteiro, M. Pila, A.G. Corrêa, B. Westermann, D.G. Rivera, M.W. Paixão, Angew. Chem. Int. Ed. 54 (2015) 7621-7625.
[17] G. Mohammadi Ziarani, S. Ghorbi, P. Gholamzadeh, A. Badiei, Iran. J. Catal. 6 (2016) 229-235.
[18] G. Mohammadi Ziarani, S. Asadi, A. Badiei, S. Mousavi, P. Gholamzadeh, Res. Chem. Intermed. 41 (2015) 637-645.
[19] P. Gholamzadeh, G.M. Ziarani, A. Badiei, J. Chil. Chem. Soc. 61 (2016) 2935-2939.
[20] S.Y. Afsar, G.M. Ziarani, H. Mollabagher, P. Gholamzadeh, A. Badiei, A.A. Soorki, J. Chil. Chem. Soc. 14 (2017) 577-583.
[21] A. Wang, X. Zheng, Z. Zhao, C. Li, Y. Cui, X. Zheng, J. Yin, G. Yang, Appl. Catal. A 482 (2014) 198-204.
[22] A.R. Moosavi-Zare, M.A. Zolfigol, M. Zarei, A. Zare, V. Khakyzadeh, A. Hasaninejad, Appl. Catal. A 467 (2013) 61-68.
[23] A.R. Moosavi-Zare, M.A. Zolfigol, M. Zarei, A. Zare, J. Afsar, Appl. Catal. A 505 (2015) 224-234.
[24] J. Xu, H.-T. Wu, C.-M. Ma, B. Xue, Y.-X. Li, Y. Cao, Appl. Catal. A 464–465 (2013) 357-363.
[25] C.P. Mehnert, Chem. Eur. J. 11 (2005) 50-56.
[26] G. Mohammadi Ziarani, R. Moradi, A. Badiei, N. Lashgari, B. Moradi, A. Abolhasani Soorki, J. Taibah Univ. Sci. 9 (2015) 555-563.
[27] P. Gholamzadeh, G. Mohammadi Ziarani, F. Zandi, A. Abolhasani Soorki, A. Badiei, F. Yazdian, C.R. Chim. 20 (2017) 833-840.
[28] M.N. Parvin, H. Jin, M.B. Ansari, S.-M. Oh, S.-E. Park, Appl. Catal. A 413–414 (2012) 205-212.
[29] P. Gholamzadeh, G. Mohammadi Ziarani, A. Badiei, Biocatal. Biotransform. 35 (2017) 131-150.
[30] K. Azizi, A. Heydari, RSC Adv. 4 (2014) 6508-6512.
[31] C. Yao, C. Yu, T. Li, S. Tu, Chin. J. Chem. 27 (2009) 1989-1994.
[32] A. Shaabani, R. Ghadari, S. Ghasemi, M. Pedarpour, A.H. Rezayan, A. Sarvary, S.W. Ng, J. Comb. Chem. 11 (2009) 956-959.
[33] J.M. Khurana, B. Nand, P. Saluja, Tetrahedron 66 (2010) 5637-5641.
[34] Y. Yu, H. Guo, X. Li, J. Heterocycl. Chem. 48 (2011) 1264-1268.
[35] A.K. Jordao, M.D. Vargas, A.C. Pinto, F.d.C. da Silva, V.F. Ferreira, RSC Adv. 5 (2015) 67909-67943.
[36] G. Mohammadi Ziarani, L. Seyedakbari, S. Asadi, A. Badiei, M. Yadavi, Res. Chem. Intermed. 42 (2016) 499-509.
[37] L. Seyedakbari, G. Mohammadi Ziarani, A. Badiei, M. Yadavi, P. Hajiabbasi, A. Abolhasani Soorki, Rev. Chim. 64 (2013) 832-837.
[38] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279 (1998) 548-552.
[39] C. Coll, J.V. Ros-Lis, R. Martínez-Máñez, M.D. Marcos, F. Sancenón, J. Soto, J. Mater. Chem. 20 (2010) 1442-1451.
[40] J.M. Andrews, J. Antimicrob. Chemother. 48 (2001) 5-16.
[41] D. Schnappinger, W. Hillen, ‎Arch. Microbiol. 165 (1996) 359-369.