TiO2/nanoclinoptilolite, a recyclable and high efficient heterogeneous nanocatalyst, for the synthesis of 2-amino-4H-chromene derivatives

Document Type: Articles

Authors

Department of Chemistry, School of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran.

Abstract

The synthesis of pharmaceutically and biologically active 2-amino-4H-chromenes was described using TiO2/nanoclinoptilolite (TiO2/NCP) as an efficient nanocatalyst under solvent-free condition. The TiO2/NCP was fabricated through modification of NCP with HDTMA, then the surface modified NCP was impregnated with titanium tetrachloride solution. Finally, the material incorporated with titanium was calcinated at 500 ºC and was characterized by FT-IR, ICP-OES, SEM, and XRD. The experimental conditions have been completely optimized and established, providing an increase in the rate and high yields. This procedure provides several merits such as a simple workup, economical, environmentally benign, short reaction time and excellent yields. Moreover, the prepared nanocomposite showed very high stability and reusability in the synthetic method under solvent-free and mild conditions.

Keywords


[1] L. Edjlali, R.H. Khanamiri, Monatsh. Chem. (2016) 1-5.
[2] S.M. George, Chem. Rev. 95 (1995) 475-476.
[3] M.G. Dekamin, M. Eslami, A. Maleki, Tetrahedron 69 (2013) 1074-1085.
[4] S. Gao, C.H. Tsai, C. Tseng, C.-F. Yao, Tetrahedron 64 (2008) 9143-9149.
[5] I. Devi, P.J. Bhuyan, Tetrahedron Lett. 45 (2004) 8625-8627.
[6] A.M. Shestopalov, Y.M. Emeliyanova, A.A. Shestopalov, L.A. Rodinovskaya, Z.I. Niazimbetova, D.H. Evans, Org. Lett. 4 (2002) 423-425.
[7] M.C. Bagley, J.W. Dale, J. Bower, Chem. Commun. (2002) 1682-1683.
[8] F. Javadi, R. Tayebee, Microporous Mesoporous Mater. 231 (2016) 100-109.
[9] Y. Sarrafi, E. Mehrasbi, A. Vahid, M. Tajbakhsh, Chin. J. Catal. 33 (2012) 1486-1494.
[10] V.M. Joshi, R.L. Magar, P.B. Throat, S.U. Tekale, B.R. Patil, M.P. Kale, R.P. Pawar, Chin. Chem. Lett. 25 (2014) 455-458.
[11] S.S. Katkar, M.K. Lande, B.R. Arbad, S.T. Gaikwad, Chin. J. Chem. 29 (2011) 199-202.
[12] A.S. Waghmare, S.S. Pandit, Iran. Chem. Commun. 3 (2015) 291-301.
[13] S. Khaksar, A. Rouhollahpour, M. Saeed, J. Fluorine Chem. 141 (2012) 11.
[14] J.-C. Xu, W.-M. Li, H. Zheng, Y.-F. Lai, P.-F. Zhang, Tetrahedron 67 (2011) 9582-9587.
[15] R.J. Kalbasi, N. Mosaddegh, Catal. Commun. 12 (2011) 1231-1237.
[16] M.N. Elinson, A.I. Ilovaisky, V.M. Merkulova, P.A. Belyakov, A.O. Chizhov, G.I. Nikishin, Tetrahedron 66 (2010) 4043-4048.
[17] S. Tu, H. Jiang, Q. Zhuang, C. Miao, D. Shi, X. Wang, Y. Gao, Chin. J .Org. Chem. 23 (2003) 488-490.
[18] T.-S. Jin, A.-Q. Wang, F. Shi, L.-S. Han, L.-B. Liu, T.-S. Li, Arkivoc 14 (2006) 78-86.
[19] W.-B. Sun, P. Zhang, J. Fan, S.-H. Chen, Z.-H. Zhang, Synth. Commun. 40 (2010) 587-594.
[20] M.R. Naimi-Jamal, S. Mashkouri, A. Sharifi, Mol. Diversity 14 (2010) 473-477.
[21] S. Balalaie, M. Bararjanian, M.S. Ahmadi, S. Hekmat, P. Salehi, Synth. Commun. 37 (2007) 1097-1108.
[22] M. Seifi, H. Sheibani, Catal. Lett. 126 (2008) 275-279.
[23] J.M. Khurana, S. Kumar, Tetrahedron Lett. 50 (2009) 4125-4127.
[24] J.T. Li, W.Z. Xu, L.C. Yang, T.S. Li, Synth. Commun. 34 (2004) 4565-4571.
[25] R. Hekmatshoar, S. Majedi, K. Bakhtiari, Catal. Commun. 9 (2008) 307-310.
[26] M.M. Heravi, B.A. Jani, F. Derikvand, F.F. Bamoharram, H.A. Oskooie, Catal. Commun. 10 (2008) 272-275.
[27] B.S. Kumar, N. Srinivasulu, R. Udupi, B. Rajitha, Y.T. Reddy, P.N. Reddy, P. Kumar, J. Heterocycl. Chem. 43 (2006) 1691-1693.
[28] G. Sabitha, K. Arundhathi, K. Sudhakar, B. Sastry, J. Yadav, Synth. Commun. 39 (2009) 433-442.
[29] D. Fang, H.B. Zhang, Z.L. Liu, J. Heterocycl. Chem. 47 (2010) 63-67.
[30] S. Makone, S. Mahurkar, Green Sustainable Chem. 3 (2013) 27-32.
[31] M. Bahrami, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 30 (2015) 275-284.
[32] N. Rajic, D. Stojakovic, N. Daneu, A. Recnik, J. Phys. Chem. Solids 72 (2011) 800-803.
[33] A. Godelitsas, T. Armbruster, Microporous Mesoporous Mater. 61 (2003) 3-24.
[34] M. Dalconi, A. Alberti, G. Cruciani, P. Ciambelli, E. Fonda, Microporous Mesoporous Mater. 62 (2003) 191-200.
[35] R. Tayebee, F. Javadi, G. Argi, J. Mol. Catal. A: Chem. 368 (2013) 16-23.
[36] D.W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York, 1974.
[37] D. Kallo, J. Papp, J. Valyon, Zeolites 2 (1982) 13-16.
[38] M.M. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, 2007.
[39] K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Kasetsart J. Nat. Sci. 42 (2008) 357-361.
[40] Y. Ren, F. Zhang, W. Hua, Y. Yue, Z. Gao, Catal. Today 148 (2009) 316-322.
[41] F. Iacomi, Surf. Sci. 532 (2003) 816-821.
[42] A. Pourtaheri, A. Nezamzadeh-Ejhieh, Spectrochim. Acta Mol. Biomol. Spectrosc. 137 (2015) 338-344.
[43] J. Farzad, R. Tayebee, B. Bahramian, Appl Organometal Chem. (2017) doi: 10.1002/aoc.3779.
[44] A. Nezamzadeh-Ejhieh, F. Khodabakhshi-Chermahini, Ind. Eng. Chem. Res. 20 (2014) 695-704.
[45] S. Nemouchi, R. Boulcina, B. Carboni, A. Debache, C.R. Chim. 15 (2012) 394-397.
[46] L.-M. Wang, J.-H. Shao, H. Tian, Y.-H. Wang, B. Liu, J. Fluorine Chem. 127 (2006) 97-100.
[47] D. Shi, J. Mou, Q. Zhuang, X. Wang, J. Chem. Res. 2004 (2004) 821-823.
[48] K. Niknam, N. Borazjani, R. Rashidian, A. Jamali, Chin. J. Catal. 34 (2013) 2245-2254.
[49] M. Makvandi, F.A. Dil, A. Malekzadeh, M. Baghernejad, K. Niknam, Iran. J. Catal. 3 (2013) 221-228.