Baker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation

Document Type: Articles

Authors

Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440 010, India

Abstract

The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chloro-3-formyl quinoline to obtain the corresponding quinoline containing nitroalcohol. The developed protocol is highly efficient and completely environmentally friendly. The work addressed the issue of non-aqueous biocatalysis, since Henry reaction catalysed by baker's yeast has been carried out in ethanol.

Keywords


[1] C.J. Li, Chem. Rev. 105 (2005) 3095-3166.
[2] S.S. Ganesan, A. Ganesan, J. Kothandapani, Synlett 25 (2014) 1847-1850.
[3] J.D. White, S. Shaw, Org. Lett. 14 (2012) 6270-6273.
[4] J. Boruwaa, N. Gogoia, P.P. Saikiaa, N.C. Barua, Tetrahedron Asymm. 17 (2006) 3315-3326.
[5] R. Kowalczyk, L. Sidorowicz, J. Skarzewski, Tetrahedron Assymm. 18 (2007) 2581-2586.
[6] H. Li, B. Wang, L. Deng, J. Am. Chem. Soc. 128 (2006) 732-733.
[7] C. Palomo, M. Oiarbid, A. Laso, Angew Chem. Int. Ed. 44 (2005) 3881-3884.
[8] M.A. Poupart, G. Fazal, S. Goulet, L. T. Mar, J. Org. Chem. 64 (1999) 1356-1361.
[9] A. Anan, R. Vathyam, K.K. Sharma, T. Asefa, Catal. Lett. 126 (2008) 142-148.
[10] R. Ballini, G. Bosica, J. Org. Chem. 62 (1997) 425-427.
[11] J.A. Weeden, J.D. Chisholm, Teterahedron Lett. 47 (2006) 9313-9316.
[12] J. Han, Y. Xu, Y. Su, X. She, X. Pan, Catal. Commun. 9 (2008) 2077-2079.
[13] J.M. Concellón, H.R. Solla, C. Concellón, J. Org. Chem. 71 (2006) 7919-7922.
[14] A. Kumar, S.S. Pawar, J. Mol. Catal. A: Chem. 235 (2005) 244-248.
[15] C.V. Bray, X.F. Wu, J.B. Sortais, C. Darcel, Teterahedron Lett. 51 (2010) 4555-4557.
[16] A. Shi, S. Kadam, S.S. Kim, Bull. Korean Chem. Soc. 30 (2009) 1767-1770.
[17] D. Uraguchi, S. Sakaki, T. Ooi, J. Am. Chem. Soc. 129 (2007) 12392-12393.
[18] I. Morao, F.P. Cossio, Teterahedron Lett. 38 (1997) 6461-6464.
[19] K. Kanagaran, P. Suresh, K. Pitchumani, Org. Lett. 12 (2010) 4070-4073.
[20] R. Yuryev, S. Briechle, M.G. Khadjawi, H. Griengl, A. Liese, ChemCatChem 2 (2010) 981-986.
[21] R.C. Tang, Z. Guan, Y.H. He, W. Zhu, J. Mol. Catal. B: Enzym. 63 (2010) 62-67.
[22] J.L. Wang, X. Li, H.Y. Xie, B.K. Liu, X.F. Lin, J. Biotechnol. 145 (2010) 240-243.
[23] J. Stewart, K. Reed, C. Martinez, J. Zhu, G. Margaret, M. Kayser, J. Am. Chem. Soc. 120 (1998) 3541-3548.
[24] R. Csuk. B.I. Glaenzer, Chem. Rev. 91 (1991) 49-97.
[25] Q.M. Wu, J.L. XuXia, J.L. Wang, X.F. Lin, Adv. Synth. Catal. 351 (2009) 1833-1841.
[26] R. Leon, P. Fernandes, H.M. Pinheiro, J.M.S. Cabral, Enzym. Microb. Technol. 23 (1998) 483-500.
[27] N.D. Punyapreddiwar, S.P. Zodape, A.V. Wankhade, U.R. Pratap, J. Mol. Catal. B: Enzym. 133 (2016) 124-126.
[28] W.J. Xia, Z.B. Xie, G.F. Jiang, Z.G. Le, Molecules 18 (2013) 13910-13919.
[29] P.K. Vijaya, S. Murugesan, A. Siva, Org. Biomol. Chem. 14 (2016) 10101-10109.
[30] H. Mei, X. Xiao, X. Zhao, B. Fang, X. Liu, L. Lina, X. Fenga, J. Org. Chem. 80 (2015) 2272-2280.
[31] B. Yi, Y. Yin, Z. Yi, W. Zhou, H. Liu, N. Tan, H. Yang, Tetrahedron Lett. 57 (2016) 2320-2323.