Activity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation

Document Type: Articles

Authors

1 Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, India.

2 Department of Chemical Engineering, Chandigarh University, Mohali, Punjab, India.

Abstract

The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by coprecipitation method, calcinated at 550°C for three hours. The results reported that the cerium based catalysts showed the highest activity T100% = 390°C in terms of CO oxidation whereas gold based catalysts showed the least activity
T58.24% = 418°C. The best selected catalyst of each group was characterized by the Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR).

Keywords


[1] H. Kebin, Z. Qiang, H. Hong, Point Sources of Pollution: Local Effects and their Control, EOLLS Publishers, Oxford, 2009.
[2] W. Liu, M.F. Stephanopoulos, J. Catal. 153 (1995) 304-316.
[3] S.H. Taylor, G.J. Hutchings, A.A. Mirzaei, Chem. Commun. (1999) 1373-1374.
[4] D.M. Whittle, A.A. Mirzaei, J.S.J. Hargreaves, R.W. Joyner, C.J. Kiely, S.H. Taylor, G.J. Hutchings, Phys. Chem. Chem. Phys. 4 (2002) 5915-5920.
[5] Y. Choi, H.G. Stenger, J. Power Sources 129 (2004) 246-254.
[6] R.M.T. Sanchez, A. Ueda, K. Tanaka, M. Haruta, J. Catal. 168 (1997) 125-127.
[7] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, J. Catal. 144 (1993) 175-192.
[8] A. Wolf, F. Schuth, Appl. Catal. A 226 (2002) 1-13.
[9] F. Moreau, G.C. Bond, A.O. Taylor, Chem. Commun. (2004) 1642-1643.
[10] B. Qiao, Y. Deng, Chem. Commun. (2003) 2192-2193.
[11] W. Yan, B. Chen, S.M. Mahurin, S. Dai, S.H. Overbury, Chem. Commun. (2004) 1918-1919.
[12] M. Koudiakov, M.C. Gupta, S. Deevi, Nanotechnology 15 (2004) 987-990.
[13] M. Kang, M.W. Song, C.H. Lee, Appl. Catal. A 251 (2003) 143-156.
[14] S.M. Eyubova, V.D. Yagodovskii, Russ. J. Phys. Chem. A 81 (2007) 544-548.
[15] M. Mokhtar, S.N. Basahel, Y.O. Al-Angary, J. Alloys Compd. 493 (2010) 376-384.
[16] Z. Zhao, M.M. Yung, U.S. Ozkan, Catal. Commun. 9 (2008) 1465-1471.
[17] M. Kang, M.W. Song, C.H. Lee, Appl. Catal. A 251 (2003) 143-156.
[18] C.B. Wang, C.W. Tang, W.C. Tsai, M.C. Kuo, S.H. Chien, Catal. Lett. 107 (2006) 31-37.
[19] G. Rattan, M. Kumar, Chem. Chem. Technol. 8 (2014) 249-260.
[20] G. Rattan, R. Prasad, R.C. Katyal, Bull. Chem. React. Eng. Catal. 7 (2012) 112-123.
[21] L.P. Ma, H.J. Bart, P. Ning, A. Zhang, G. Wu, Z. Zengzang, Chem. Eng. J. 155 (2009) 241-247.
[22] A. Gulino, P. Dapporto, P. Rossi, I. Fragala, Chem. Mater. 15 (2003) 3748-3752.
[23] C.W. Tang, T.Y. Leu, W.Y. Yu, C.B. Wang, S.H. Chien, Thermochim. Acta 473 (2008) 68-73.
[24] M. Bordbar, S.M. Vasegh, S. Jafari, A.Y. Faal, Iran. J. Catal. 5 (2015) 135-141.
[25] K.K. Babitha, A. Sreedevi, K.P. Priyanka, B. Sabu, T. Varghese, Indian J. Pure Appl. Phys. 53 (2015) 596-603.
[26] M. Deneva, J. Univ. Chem. Technol. Metall. 45 (2010) 351-378.
[27] M.M.J. Sadiq, A.S. Nesaraj, Iran. J. Catal. 4 (2014) 219-226.
[28] B. Khodadadi, M. Bordbar, Iran. J. Catal. 6 (2016) 37-42.
[29] A. Pourtaheri, A. Nezamzadeh-Ejhieh, Chem. Eng. Res. Design 104 (2015) 835-843.
[30] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Hazard Mater. 321 (2017) 629-638.
[31] A. Shirzadi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chem. 411 (2016) 222-229.