A green synthesis of di-indolyloxindols catalyzed by CuO/g-C3N4 nanocomposite under mild conditions

Document Type: Articles

Author

Department of Chemistry, Faculty of Science, University of Birjand, P. O. Box 97175-615, Birjand, Iran.

Abstract

In this study, novel CuO/g-C3N4 nanocomposite was simply synthesized by impregnation of g-C3N4 with CuO nanoparticles. Then, the heterogeneous catalyst was characterized by various techniques including Fourier transform infrared spectroscopy
(FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). Moreover, the Friedel–Crafts 3-indolylation reaction of isatin with indole derivatives in water as a green solvent was investigated using catalytic amount of CuO/g-C3N4 nanocomposite. The results showed that di-indolyloxindole derivatives are synthesized in good to excellent yields at mild conditions. Finally, this method has some advantages including the use of water as a green solvent, short reaction time, room temperature, easy work up and excellent yields.


Keyword: CuO/g-C3N4 nanocomposite; di-indolyloxindols; indole; isatin.

Keywords


[1] S.G. Babu, K. Ramasamy, Ind. Eng. Chem. Res. 50 (2011) 9594–9600.
[2] F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 48 (2009) 6954-6971.
[3] G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 108 (2008) 3054-3131.
[4] W. Xu, Y. Jin, H. Liu, Y. Jiang, H. Fu, Org. Lett. 13 (2011) 1274-1277.
[5] H. Wang, X. Cao, L. Xiangxiang, S. Fuhong, G-J. Deng, Org. Lett. 15 (2013) 4900-4903.
[6] B-Q. Hu, L-X. Wang, J-F. Xiang, L. Yang, Y-L. Tang, Chin. Chem. Lett. 26 (2015) 369-372.
[7] D.K. Sreenivas, N. Ramkumar, R. Nagarajan, Org. Biomol. Chem. 10 (2012) 3417-3423.
[8] A. Kumar, D. Saxena, M.K. Gupta, Green Chem. 15 (2013) 2699-2703.
[9] N. Khatun, S.K. Santra, A. Banerjee, B.K. Patel, Eur. J. Org. Chem. 6 (2015) 1309-1313
[10] (a) S.K. Rout, S. Guin, J. Nath, B.K. Patel, Green Chem. 14 (2012) 2491-2498. (b) M. Baghbanzadeh, P. Salehi, M. Dabiri, G. Kozehgary, Synthesis (2006) 344-348.
[11] S.K. Friedlander, Smoke, Dust, and Haze: Fundamentals of aerosol dynamics, New York, Oxford University Press (2000)
[12] C.H. Nam, R. Pfeffer, R.N. Dave, S. Sundaresan, AIChE. J. 50 (2004) 1776–1785.
[13] Q. Yu, R.N. Dave, C. Zhu, J.A. Quevedo, R. Pfeffer, AIChE. J. 51 (2005) 1971–1979.
[14] J.A. Kurkela, D.P. Brown, J. Raula, E.I. Kauppinen, Powder Technol. 180 (2008) 164–171.
[15] W. Yao, G. Suangsheng, W. Fei, W. Jun, Powder Technol. 124 (2002) 152–159.
[16] Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51 (2012) 68-89.
[17] S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150-2176.
[18] K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota, K. Domen, Phys. Chem. Chem. Phys. 12 (2010) 13020–13025.
[19] F. Dong, L.W. Wu, Y.J. Sun, M. Fu, Z.B. Wu, S.C. Lee, J. Mater. Chem. 21 (2011) 15171–15174.
[20] J.H. Liu, Y.W. Zhang, L.H. Lu, G. Wu, W. Chen, Chem. Commun. 48 (2012) 8826–8828.
[21] Y.W. Zhang, J.H. Liu, G. Wu, W. Chen, Nanoscale 4 (2012) 5300–5303.
[22] J.D. Hong, X.Y. Xia, Y.S. Wang, R. Xu, J. Mater. Chem. 22 (2012) 15006–15012.
[23] Y.J. Wang, Z.X. Wang, S. Muhammad, J. He, CrystEngComm 14 (2012) 5065–5070.
[24] J.S. Zhang, M.W. Zhang, R.Q. Sun, X.C. Wang, Angew. Chem. Int. Ed. 51 (2012) 10145–10149.
[25] L.C. Chen, X.T. Zeng, P. Si, Y.M. Chen, Y.W. Chi, D.H. Kim, G. Chen, Anal. Chem. 86 (2014) 4188–4195.
[26] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J-O. Müller, R. Schlögl, J.M. Carlsson, J. Mater. Chem. 18 (2008) 4893-4908.
[27] X. Wang, K. Maeda, A. Thomas, K. Takanabe, Nat. Mater. 8 (2009) 76–80.
[28] B. Long, J. Lin, X. Wang, J. Mater. Chem. A 2 (2014) 2942–2951.
[29] J. Bergman, N. Eklund, Tetrahedron 36 (1980) 1445-1450.
[30] J. Azizian, A.A. Mohammadi, A.R. Karimi, M.R. Mohammadizadeh, J. Chem. Res. 6 (2004) 424-426.
[31] S.Y. Wang, S.J. Ji, Tetrahedron 62 (2006) 1527-1535.
[32] P. Paira, A. Hazra, S. Kumar, R. Paira, K.B. Sahu, S. Naskar, P. Saha, S. Mondal, A. Maity, S. Banerjee, N.B. Mondal, Bioorg. Med. Chem. Lett. 19 (2009) 4786-4789.
[33] K. Rad-Moghadam, M. Sharifi-Kiasaraie, H. Taheri-Amlashi, Tetrahedron 66 (2010) 2316-2321.
[34] A. Kamal, Y.V.V. Srikanth, M.N.A. Khan, T.B. Shaik, M. Ashraf, Bioorg. Med. Chem. Lett. 20 (2010) 5229-5231.
[35] J.S. Yadav, B.V.S. Reddy, K.U. Gayathri, S. Meraj, A.R. Prasad, Synthesis (2006) 4121-4123.
[36] D.A. Klumpp, K.Y. Yeung, G.K.S. Prakash, G.A. Olah, J. Org. Chem. 63 (1998) 4481-4484.
[37] J. Azizian, A.A. Mohammadi, N. Karimi, M.R. Mohammadizadeh, A.R. Karimi, Catal. Commun. 7 (2006) 752-755.
[38] K. Alimohammadi, Y. Sarrafi, M. Tajbakhsh, Monatsh. Chem. 139 (2008) 1037–1039.
[39] M. Chakrabarty, S. Sarkar, Y. Harigaya, J. Chem. Res. (2005) 540–542.
[40] M. Nikpasand, M. Mamaghani, Kh. Tabatabaeian, H.A. Samimi, Synth. Commun. 40 (2010) 3552–3560.
[41] M. Haghighi, K. Nikoofar, J. Saudi Chem. Soc. 20 (2016) 101-106.
[42] N. Karimi, H. Oskooi, M.M. Heravi, M. Saeedi, M. Zakeri, N. Tavakoli, Chin. J. Chem. 29 (2011) 321–323.
[43] Y. Sarrafi, K. Alimohammadi, M. Sadatshahabi, N. Norozipoor, Monatsh. Chem. 143 (2012) 1519–1522.
[44] M. Shiri, J. Iran. Chem. Soc. 10 (2013) 1019–1023.
[45] A. Saffar-Teluri, Res. Chem. Intermed. 40 (2014) 1061-1067.
[46] I. Sharma, A. Saxena, C.K. Ojha, C.K.P. Paradasani, R.T. Paradasani, T. Mukherjee, Chem. Sci. 114 (2002) 523-531.
[47] F.X. Felpin, O. Ibarguren, L. Nassar-Hardy, E. Fouquet, J. Org. Chem. 74 (2009) 1349-1352.
[48] M.A. Nasseri, A. Allahresani, A.A. Esmaeili, Lett. Org. Chem. 11 (2014) 91–96.
[49] M.A. Nasseri, A. Allahresani, H. Raissi, Iran J. Catal. 4 (2014) 33–40.
[50] M.A. Nasseri, A. Allahresani, H. Raissi, RSC Adv. 4 (2014) 26087-26093.
[51] A. Allahresani, M.A. Nasseri, RSC Adv. 4 (2014) 60702-60710.
[52] L.S. Yin, Y.P. Yuan, S.W. Cao, Z.Y. Zhang, C. Xu, RSC Adv. 4 (2014) 6127-6132.
[53] L. Liu, Y. Qi, J. Hu, Y. Liang, W. Cui, Appl. Surf. Sci. 351 (2015) 1146–1154.
[54] X. Liu, B. Geng, Q. Du, J. Ma, X. Liu, Mater. Sci. Eng. A 448 (2007) 7–14.
[55] B. Das, K. Damodar, N. Chowdhury, J. Mol. Catal. A: Chem. 269 (2007) 81-84.
[56] M. Vijender, P. Kishore, P. Narender, B. Satyanarayana, J. Mol. Catal. A: Chem. 266 (2007) 290-293.
[57] Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, S. Zhang, Catal. Sci. Technol. 4 (2014) 1556-1562.
[58] J. Xu, H.-T. Wu, X. Wang, B. Xue, Y.-X. Li, Y. Cao, Phys. Chem. Chem. Phys. 15 (2013) 4510-4517.
[59] J.H. Sun, J.S. Zhang, M.W. Zhang, M. Antonietti, X.Z. Fu, X.C. Wang, Nat. Commun. 3 (2012) 1139-1145.
[60] Y.J. Cui, J.S. Zhang, G.G. Zhang, J.H. Huang, P. Liu, M. Antonietti, X.C. Wang, J. Mater. Chem. 21 (2011) 13032-13039.
[61] F.T. Li, Y.B. Xue, B. Li, Y.J. Hao, X.J. Wang, R.H. Liu, J. Zhao, Ind. Eng. Chem. Res. 53 (2014) 19540-19549.
[62] W. Lu, B. Liu, Q. Qiu, F. Wang, Z. Luo, P. Zhang, S. Wei, J. Alloy Compd. 479 (2009) 480–483
[63] R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K.S. Shivashangari, V. Ravikumar, Spectrochim. Acta. A 121 (2014) 746-750.
[64] R. Sankar, R. Maheswari, S. Karthik, K.S. Shivashangari, V. Ravikumar, Mater. Sci. Eng. C 44 (2014) 234-239.
[65] J. Zhang, J. Buffle, J. Colloid Interface Sci. 174 (1995) 500-509.
[66] H. Alinezhad, A. H. Haghighi, F. Salehian, Chin. Chem. Lett. 21 (2010) 183–186.
[67] G.M. Patel, P.T. Deota, Heterocycl. Commun. 19 (2013) 421–424.
[68] A.R. Karimi, Z. Dalirnasab, G.H. Yousefi, A. Akbarizadeh, Res. Chem Intermed. 41 (2015) 10007–10016
[69] B.V. Subba Reddy, N. Rajeswari, M. Sarangapani, Y. Prashanthi, R.J. Ganji, A. Addlagatta, Bioorg. Med. Chem. Lett. 22 (2012) 2460–2463.
[70] K. Rad-Moghadam, S. Gholizadeh, Iran J. Catal. 4 (2014) 41-47.
[71] M.A. Nasseri, F. Ahrari, B. Zakerinasab, RSC Adv. 5 (2015) 26517-26520.
[72] M.A. Nasseri, B. Zakerinasab, Iran J. Catal. 5 (2013) 109-116.