Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite

Document Type: Articles

Author

Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 71961, Iran.

Abstract

The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 were synthesized by hydrothermal and sol-gel/ hydrothermal treatment techniques, respectively and characterized by FT-IR spectroscopy, x-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy (DRS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Doping of TiO2 with InVO4 caused reduction in its band gap value with the resultant improvement in its visible light activity. The efficiency of nanocomposite on azo dyes degradation (pH 7.2, time: 30 min) reached high values (above 95%) under visible light, proving the remarkable photocatalytic activities of obtained composites. Moreover, the results indicated complete mineralization of DR 23 and DB 166 by InVO4- TiO2 under visible light for 300 min.

Keywords


[1] V. Eskizeybek, F. Sarı, H. Gülce, A. Gülce, A. Avcı, Appl. Catal. B 119–120 (2012) 197-206.
[2] H.R. Pouretedal, M. Ahmadi, Iran. J. Catal. 3 (2013) 149-155.
[3] L. Vafayi, S. Gharibe, Iran. J. Catal. 5 (2015) 365-371.
[4] A. Buthiyappan, A.R. Abdul Aziz, W.M. Ashri Wan Daud, Rev. Chem. Eng. 32 (2016) 1-47.
[5] M. Karimi-Shamsabadi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chem. 418 (2016) 103-114.
[6] E.P. Chagas, L.R. Durrant, Enzyme Microb. Technol. 29 (2001) 473-477.
[7] M. Stylidi, D.I. Kondarides, X.E. Verykios, Appl. Catal. B 40 (2003) 271-286.
[8] I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49 (2004) 1-14.
[9] C. Feng, X. Zhuo, X. Liu, J. Rare Earth 27 (2009) 717-722.
[10] M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341-357.
[11] M.A. Rauf, M.A. Meetani, S. Hisaindee, Desalination 276 (2011) 13-27.
[12] B. Khodadadi, Iran. J. Catal. 6 (2016) 305-311.
[13] A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, J. Ind. Eng. Chem. 21 (2015) 668-676.
[14] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-271.
[15] M. Grätzel, Nature 414 (2001) 338-344.
[16] S.U. Khan, M. Al-Shahry, W.B. Ingler, Science 297 (2002) 2243-2245.
[17] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 127 (2005) 8286-8287.
[18] W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, J. Am. Chem. Soc. 126 (2004) 4782-4783.
[19] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 414 (2001) 625-627.
[20] A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, M. Atarod, J. Alloys Compd. 689 (2016) 15-20.
[21] H. Fallah Moafi, Iran. J. Catal. 6 (2016) 281-292.
[22] J. Yang, Y. Kim, Y. Shul, C. Shin, T. Lee, Appl. Surf. Sci. 121 (1997) 525-529.
[23] A. Sclafani, L. Palmisano, G. Marcı, A. Venezia, Sol. Energy Mater. Sol. Cells 51 (1998) 203-219.
[24] L. Zang, W. Macyk, C. Lange, W.F. Maier, C. Antonius, D. Meissner, H. Kisch, Chem. Eur. J. 6 (2000) 379-384.
[25] D. Dvoranova, V. Brezova, M. Mazúr, M.A. Malati, Appl. Catal. B 37 (2002) 91-105.
[26] N. Ajoudanian, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process 36 (2015) 162-169.
[27] H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 652-464.
[28] U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 395 (1998) 583-585.
[29] J.C. Yu, L. Wu, J. Lin, P. Li, Q. Li, Chem. Commun. (2003) 1552-1553.
[30] M. Oshikiria, M. Boero, J. Ye, Z. Zou, G. Kido, J. Chem. Phys. 117 (2002) 7313-7318.
[31] M. Oshikiri, M. Boero, J. Ye, F. Aryasetiawan, G. Kido, Thin Solid Films 445 (2003) 168-174.
[32] J. Tang, Z. Zou, J. Ye, Chem. Mater. 16 (2004) 1644-1649.
[33] S. Dianat, S. Tangestaninejad, V. Mirkhani, M. Moghadam, I. Mohammadpoor-Baltork, J. Iran. Chem. Soc. 10 (2013) 535-544.
[34] J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 316 (2016) 194-203.
[35] M. Babaahamdi-Milani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 318 (2016) 291-301.
[36] A. Shirzadi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chem. 411 (2016) 222-229.
[37] S. Jafari, A. Nezamzadeh-Ejhieh, J. Colloid Interface Sci. 490 (2017) 478-487.
[38] J. Ye, Z. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai, T. Shishido, Chem. Phys. Lett. 356 (2002) 221-226.
[39] C.S. Enache, D. Lloyd, M.R. Damen, J. Schoonman, R. van de Krol, J. Phys. Chem. C 113 (2009) 19351-19360.
[40] Z. Zou, J. Ye, H. Arakawa, Chem. Phys. Lett. 332 (2000) 271-277.
[41] M. Bordbara, S. Forghani-Pileroodb, A. Yeganeh-Faalb, Iran. J. Catal. 6 (2016) 415-421.
[42] A. Nezamzadeh-Ejhieh, S. Hushmandrad, Appl. Catal. A 388 (2010) 149-159.
[43] J. Vakros, C. Kordulis, A. Lycourghiotis, Chem. Commun. (2002) 1980-1981.
[44] A. Nezamzadeh-Ejhieh, M. Khorsandi, Iran. J. Catal. 1 (2011) 99-104.
[45] J. Saien, S. Khezrianjoo, J. Hazard. Mater. 157 (2008) 269-276.
[46] A. Besharati-Seidani, Iran. J. Catal. 6 (2016) 447-454.
[47] Z. Shams-Ghahfarokhi, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Process. 39 (2015) 265-275.
[48] X. Lin, D. Xu, Z. Lin, S. Jiang, L. Chang, RSC Adv. 5 (2015) 84372-84380.