Fe3O4/SiO2/(CH2)3N+Me3Br3– core–shell nanoparticles: An efficient catalyst for the synthesis of functionalized 5-oxo-hexahydroquinolines

Document Type: Articles

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.

3 Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

Abstract

The four-component Hantzsch condensation reaction of dimedone, ethyl acetoacetate, ammonium acetate, and various aromatic and aliphatic aldehydes in the presence of catalytic amount of a magnetic nanoparticle-supported tribromide, as a green catalyst, under solvent‐free conditions at 80 °C affords functionalized 5-oxo-hexahydroquinolines in good to excellent yields. The magnetic Fe3O4-SiO2-(CH2)3N+Me3Br3, was characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy, transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The method offers several advantages including high yields, short reaction time, simple work-up procedure and catalyst reusability for several runs. The catalyst could be readily separated by using a magnetic force and reused six times without any significant loss of catalytic activity.

Keywords


[1] S.G. Grancharov, H. Zeng, S. Sun, S.X. Wang, S.O. Brien, C.B. Murray, J.R. Kirtley, G.A. Held, J. Phys. Chem. B 109 (2005) 13030-13035.
[2] S.H. Hu, C.H. Tsai, C.F. Liao, D.M. Liu, S.Y. Chen, Langmuir 24 (2008) 11811-11818.
[3] A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng. 100 (2005) 1-11.
[4] A. Kara, B. Erdem, J. Mol. Catal. A Chem. 349 (2011) 42-47.
[5] K. Fujita, S. Umeki, M. Yamazaki, T. Ainoya, T. Tsuchimoto, H. Yasuda, Tetrahedron Lett. 52 (2011) 3137-3140.
[6] J. Wang, B. Xu, H. Sun, G. Song, Tetrahedron Lett. 54 (2013) 238-241.
[7] H.H. Yang, S.Q. Zhang, X.L. Chen, Z.X. Zhuang, J.G. Xu, X.R. Wang, Anal. Chem. 76 (2004) 1316-1321.
[8] C.Q. Yang, G. Wang, Z.Y. Lu, J. Sun, J.Q. Zhuang, W.S. Yang, J. Mater. Chem. 15 (2005) 4252-4257.
[9] N.T.S. Phan, C.W. Jones, J. Mol. Catal. A: Chem. 253 (2006) 123-131.
[10] A. Farrokhi, K. Ghodrati, I. Yavari, Catal. Commun. 63 (2015) 41-46.
[11] L.M. Wang, J. Sheng, L. Zhang, J.W. Han, Z. Fan, H. Tian, C.T. Qian, Tetrahedron 61 (2005) 1539-1543.
[12] S. Ko, M.N.V. Sastry, C. Lin, C.F. Yao, Tetrahedron Lett. 46 (2005) 5771-5774.
[13] M. Tajbakhsh, H. Alinezhad, M. Norouzi, S. Baghery, M. Akbari, J. Mol. Liq. 177 (2013) 44-48.
[14] R. Surasani, D. Kalita, A.V.D. Rao, K. Yarbagi, K.B. Chandrasekhar, J. Fluorine Chem. 135 (2012) 91-96.
[15] S. Kumar, P. Sharma, K.K. Kapoor, M.S. Hundal, Tetrahedron 64 (2008) 536-542.
[16] M. Hong, C. Cai, W.B. Yi, J. Fluorine Chem. 131 (2010) 111-114.
[17] C.X. Yu, D.Q. Shi, Q.Y. Zhuang, S.J. Tu, Chin. J. Org. Chem. 26 (2006) 263-267.
[18] S. Ko, C.F. Yao, Tetrahedron 62 (2006) 7293-7299.
[19] L. Nagarapu, M. Dharani Kumari, N. Vijaya Kumari, S. Kantevari, Catal. Commun. 8 (2007) 1871-1875.
[20] S.J. Ji, Z.Q. Jiang, J. Lu, T.P. Loh, Synlett (2004) 831-834.
[21] N.N. Karade, V.H. Budhewara, S.V. Shindeb, W.N. Jadhav, Lett. Org. Chem. 4 (2007) 16-19.
[22] M. Saha, A.K. Pal, Tetrahedron Lett. 52 (2011) 4872-4877.
[23] F. Matloubi-Moghaddam, H. Saeidian, Z. Mirjafary, A. Sadeghi, J. Iran. Chem. Soc. 6 (2009) 317-324.
[24] M.M. Heravi, K. Bakhtiari, N.M. Javadi, F.F. Bamoharram, M. Saeedi, H.A. Oskooie, J. Mol. Catal. A: Chem. 264 (2007) 50-52.
[25] C.M. Adharvana, K. Syamasundar, Catal. Commun. 6 (2005) 624-626.
[26] M. Maheswara, V. Siddaiah, Y.K. Rao, Y.M. Tzeng, C. Sridhar, J. Mol. Catal. A. Chem. 260 (2006) 179-180.
[27] A.R. Kiasata, H. Almasia, S.J. Saghanezhad, Org. Chem. Res. 1 (2015) 72-77.
[28] S.M. Vahdat, F. Chekin, M. Hatami, M. Khavarpour, S. Baghery, Z. Roshan-kouhi, Chin. J. Catal. 34 (2013) 758–763.
[29] M.Z. Kassaee, H. Masrouri, F. Movahedi, Monatsh. Chem. 141 (2010) 317–322.