Nano-Fe3O4 as a heterogeneous recyclable magnetically separable catalyst for synthesis of nitrogen fused imidazoheterocycles via double C-N bond formation

Document Type: Articles

Authors

1 Department of Chemistry, JET’s Z. B. Patil College, Dhule-424002, (MS), India.

2 Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) India.

Abstract

An efficient and convenient approach towards the synthesis of nitrogen fused imidazoheterocycles through double C-N bond formation in a single step has been achieved with a good range of substituted phenacyl bromides in the presence of magnetically recoverable Fe3O4 as a green heterogeneous nanocatalyst. The present approach was found to be environmentally benign and economically feasible in view of its ease of application, low cost and easy separation. Developed methodology has several advantages such as wide scope of substrates, easily available catalyst, operationally simple and high yield. Moreover, the magnetically separable catalyst was easily separated from the reaction mixture using an external magnet and recycled up to four times without much lost in its catalytic activity.

Keywords


[1] E.G. Brown, Ring nitrogen and key biomolecules: The biochemistry of N-heterocycles, Kluver academic, Boston, 1998
[2] C. Enguehard-Gueiffier, A. Gueiffier, Mini Rev. Med. Chem. 7 (2007) 888-899.
[3] (a) F. Couty, G. Evano, Comprensive Heterocyclic Chemistry, Elsevier, Oxford, 2008. (b) M.A. Chaudhari, J.B. Gujar, D.S. Kawade, T.V. Shinde, M.S. Shingare, Res. Chem. Intermed. 41 (2015) 10027-10035.
[4] J.E. Starrett, T.A. Montzka, A.R. Croswell, R.L. Cavanahg, J. Med. Chem. 32 (1989) 2204-2210.
[5] A. Andreani, M. Rambaldi, A. Leoni, A. Locatelli, R. Bossa, J. Med. Chem. 39 (1996) 2852-2855.
[6] K.C. Rupert, J.R. Henry, J.H. Dodd, S.A. Wadsworth, D.E. Cavender, G.C. Olini, B. Fahmi, J. Siekierka, Bioorg. Med. Chem. Lett. 13 (2003) 347-350.
[7] (a) J.S. Barradas, M.I. Errea, N.B. D’Accorso, C.S. Cepulveda, E.B. Demonte, Eur. J. Med. Chem. 46 (2011) 259-264. (b) M. Lhassani, O. Chavignon, J.M. Chezal, J.C. Teulade, J.P. Chapat, R. Snoeck, G. Andrei, J. Balzarini, E.D. Clercq, A. Gueiffier, Eur. J. Med. Chem. 34 (1999) 271-274.
[8] W.K. Amery, C.H. Hoerrig, R.I. Fenichel, M.A. Chirigos (Eds), Immune modulation agents and their mechanism, Marcel Dekker, Newyork-Basel, 1984, pp. 383-408.
[9] T. Mase, H. Arima, K. Tomioka, T. Yamada, K. Murase, J. Med. Chem. 29 (1986) 386-394.
[10] R. Budriesi, P. Loan, A. Leoni, N. Pedemonte, A. Locatelli, M. Micucci, A. Chiarini, L.J.V. Galietta, J. Med. Chem. 54 (2011) 3885-3894.
[11] (a) S.Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 46 (1990) 61-72. (b) T. Swainston Harrison, G.M. Keating, CNS Drugs. 19 (2005) 65-89. (c) M. Lancel, A. Steiger, Angew. Chem. Int. Ed. 38 (1999) 2852-2864.
[12] D. Belohlavek, P. Malfertheiner, Scand. J. Gastroenterol. Suppl. 54 (1979) 44–51.
[13] T.S. Harrison, G.M. Keating, CNS Drugs 19 (2005) 65-89.
[14] R.J. Boemer, H.J. Moller, Psychopharmako, Therap. 4 (1997) 145-153.
[15] K. Mizushige, T. Ueda, K. Yukiiri, H. Suzuki, Cardiovasc. Drug. Rev. 20 (2002) 163-174.
[16] (a) A. Kamal, G.B. Ramesh Khanna, T. Krishnaji, R. Ramu, Bioorg. Med. Chem. Lett. 15 (2005) 613-615. (b) H. Amarouch, P.R. Loiseau, C. Bacha, R. Caujolle, M. Payard, P.M. Loiseau, C. Bories, P. Gayral, Eur. J. Med. Chem. 22 (1987) 463-466.
[17] (a) N. Amino, Y. Ideyama, M. Yamono, S. Kuromitsu, K. Tajinda, K. Samizu, A. Matsuhisa, M. Kudoh, M. Shibasaki, Cancer Lett. 238 (2006) 119-127. (b) A.R. Cardones, L.L. Banez, Curr. Phar. Design 12 (2006) 387-394.
[18] (a) D. Alagille, H. DaCosta, R.M. Baldwin, G.D. Tamagnan, Bioorg. Med. Chem. Lett. 21 (2011) 2966-2968. (b) B.H. Yousefi, A. Manook, A. Drzezga, B. Reutern, J. Med. Chem. 54 (2011) 949-956. (c) B.H. Yousefi, A. Drzezga, B. Reutern, A. Manook, ACS Med. Chem. Lett. 2 (2011) 673-677.
[19] C. Enguehard-Gueiffier, A. Gueiffier, Mini Rev. Med. Chem. 7 (2007) 888-899.
[20] (a) A.K. Bagdi, S. Santra, K. Monir, A. Hajra, Chem. Commun. 51 (2015) 1555-1575. (b) A.K. Bagdi, A. Hajra, Chem. Rec. 2016, 1868-1885.
[21] S.V. Patil, N.D. Gaikwad, V.D. Bobade, Arabian J. Chem. 9 (2016) s1649-s1653.
[22] S. Kumar, D.P. Sahu, ARKIVOC XV (2008) 88-98.
[23] S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, Tetrahedron Let. 44 (2003) 6265–6267.
[24] L. Cai, C. Brouwer, K. Sinclair, J. Cuevas, V.W. Pike, Synthesis (2006) 133-145.
[25] S. Ponnala, S.T.V.S. Kiran Kumar, B.A. Bhat, D.P. Sahu, Synth. Commun. 35 (2005) 901–906.
[26] S. Sharma, B. Saha, D. Sawant, B. Kundu, J. Comb. Chem. 9 (2007) 783-792.
[27] H. Tomoda, T. Hirano, S. Saito, T. Mutai, K. Araki, Bull. Chem. Soc. Jpn. 72 (1999) 1327-1334.
[28] D.J. Zhu, J.X. Chen, M.C. Liu, J.C. Dinga, H.Y. Wu, J. Braz. Chem. Soc. 20 (2009) 482-487.
[29] S. Balalaie, F. Derakhshan-Panah, M.A. Zolfigol, F. Rominger, Synlett (2018) 89-93.
[30] J.S. Yadav, B.V. Subba Reddy, Y.G. Rao, M. Srinivas, A.V. Narsaiah, Tetrahedron Lett. 48 (2007) 7717–7720.
[31] Y.Y. Xie, Z.C. Chen, Q.G. Zheng, Synthesis (2002) 1505–1508.
[32] M. Ueno, H. Togo, Synthesis (2004) 2673–2677.
[33] N. Chernyak, V. Gevorgyan, Angew. Chem. Int. Ed. 49 (2010) 2743-2746.
[34] D. Wang, D. Astruc, Chem. Rev. 114 (2014) 6949-6985.
[35] R. Hudson, Y. Feng, R.S. Varma, A. Moores, Green Chem. 16 (2014) 4493-4505.
[36] S. Shylesh, V. Schnemann, W.R. Thiel. Angew. Chem. Int. Ed. 49 (2010) 3428-3459.
[37] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev. 111 (2011) 3036-3075.
[38] M.B. Gawande, P.S. Branco, R.S. Varma, Chem. Soc. Rev. 42 (2013) 3371-3393.
[39] V. Polshettiwar, R.S. Varma, Org. Biomol. Chem. 7 (2009) 37–40.
[40] G.S. Kumar, S.P. Ragini, A.S. Kumar, H.M. Meshram, RSC Adv. 5 (2015) 51576-51580.
[41] R. Aggarwal, G. Sumran, Synth. Commun. 36 (2006) 875–879.