|
Mokhtary, M. (2019). Green approach for the synthesis of pyranopyrazoles and hexahydroquinoline-3-carboxamides using unripe grape juice (verjuice) as catalyst. Iranian Journal of Catalysis, 9(1), 21-26.Masoud Mokhtary. "Green approach for the synthesis of pyranopyrazoles and hexahydroquinoline-3-carboxamides using unripe grape juice (verjuice) as catalyst". Iranian Journal of Catalysis, 9, 1, 2019, 21-26.Mokhtary, M. (2019). 'Green approach for the synthesis of pyranopyrazoles and hexahydroquinoline-3-carboxamides using unripe grape juice (verjuice) as catalyst', Iranian Journal of Catalysis, 9(1), pp. 21-26.Mokhtary, M. Green approach for the synthesis of pyranopyrazoles and hexahydroquinoline-3-carboxamides using unripe grape juice (verjuice) as catalyst. Iranian Journal of Catalysis, 2019; 9(1): 21-26.
Green approach for the synthesis of pyranopyrazoles and hexahydroquinoline-3-carboxamides using unripe grape juice (verjuice) as catalyst
Article 3, Volume 9, Issue 1, Winter 2019, Page 21-26
PDF (999.08 K)
Document Type: Articles
Author
Masoud Mokhtary
Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran.
Abstract
Unripe grape juice (verjuice) as a natural catalyst was successfully applied to perform the one-pot reaction of aryl aldehydes, malononitrile, hydrazine hydrate and ethyl acetoacetate to synthesize pyranopyrazole derivatives in aqueous ethanol at room temperature in excellent yields. Furthermore, unripe grape juice catalyzed one-pot synthesis of hexahydroquinoline-3-carboxamide derivatives by the four-component reaction of arylaldehydes, dimedone, acetoacetanilide and ammonium acetate in high to excellent yield in ethanol at 70 ℃. The synthesized compounds were identified by FT-IR, 1H NMR and 13C NMR spectroscopic techniques and elemental analysis. An environmentally benign procedure, short reaction time, high yields and biocompatible natural catalyst are some advantages of this research.
Keywords
Unripe grape juice; Multi-component reactions; Pyranopyrazoles; Hexahydroquinoline-3-carboxamides
Supplementary Files
References
[1] A.C. Kaliora, A.M. Kountouri, V.T. Karathanos, J. Med. Food 12 (2009)1302-1309.
[2] K.M. Janisch, C. Olschlager, D. Treutter, E.F. Elstner, J. Agric. Food Chem. 54 (2006) 4839-4848.
[3] K. Karthikeyan, B.R. Bai, S.N. Devaraj, J. Cardiovasc. Pharmacol. 53 (2009) 109-115.
[4] W.R. Leifert, M.Y. Abeywardena, Nutr. Res. 28 (2008) 842-850.
[5] M.S.P. Nikfardjam, Mitt. Klosterneuburg 58 (2008) 28-31.
[6] M. Karapinar, I.Y. Sengun, Food Control. 18 (2007) 702-706.
[7] I. Hayoglu, O. Kola, C. Kaya, S. Özer, H. Turkoglu, J. Food Process Preserv. 33 (2009) 252-263.
[8] S. Karabiyikli, N. Öncül, J. Food Process Preserv. 40 (2016) 459–1465.
[9] A.D. de Matos, A. Curioni, A.T. Bakalinsky, M. Marangon, G. Pasini, S. Vincenzi, Innov. Food Sci. Emerg. Technol. 44 (2017) 9-14.
[10] M. Setorki, B. Nazari, S. Asgary, L. Azadbakht, M. Rafieian-Kopaei, Afr. J. Pharm. Pharacol. 5(2011) 1038-1045.
[11] M. Alipour, P. Davoudi, Z. Davoudi, J. Med. Plants Res. 6 (2012) 5677-5683.
[12] B. Zolfaghari, M. Kazemi, M. Nematbakhsh, Adv. Biomed. Res. 4 (2015) 109-112.
[13] S. Soares, R. Vitorino, H. Osório, A. Fernandes, A. Venâncio, N. Mateus, F. Amado, V. de Freitas, J. Agric. Food Chem. 59 (2011) 5535-5547.
[14] H. Adibi, L. Hosseinzadeh, S. Farhadi, F. Ahmadi, J. Reports Pharma Sci. 2 (2013) 116-124.
[15] M.E.A. Zaki, H.A. Saliman, O.A. Hiekal, A.E.Z. Rashad, Naturforsch. C: Biosci. 61 (2006) 1-5.
[16] N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G. Robertson, A.E. Surgenor, Bioorg. Med. Chem. 14 (2006) 4792-4802.
[17] F.M. Abdelrazek, P. Metz, N.H. Metwally, S.F. El-Mahrouky, Arch. Pharm. 339 (2006) 456-460.
[18] A.R. Moosavi-Zare, M.A. Zolfigol, E. Noroozizadeh, M. Tavasoli, V. Khakyzadeh, A. Zare, New J. Chem. 37 (2013) 4089-4094.
[19] H. Kiyani, H.A. Samimi, F. Ghorbani, S. Esmaieli, Curr. Chem. Lett. 2 (2013) 197-206.
[20] G. Brahmachari, B. Banerjee, ACS Sust. Chem. Eng. 2 (2014) 411-422.
[21] C.F. Zhou, J.J. Li, W.K. Su, Chin. Chem. Lett. 27 (2016)1686–1690.
[22] E. Soleimani, M. Jafarzadeh, P. Norouzi, J. Dayou, C.S. Sipaut, R.F. Mansa, P. Saei, J. Chin. Chem. Soc. 62 (2015)1155-1162.
[23] H. Mecadon, M.R. Rohman, M. Rajbangshi, B. Myrboh, Tetrahedron Lett. 52 (2011) 2523-2525.
[24] H. Mecadon, M.R. Rohman, I. Kharbangar, B. M. Laloo, I. Kharkongor, M. Rajbangshi, B. Myrboh, Tetrahedron Lett. 52 (2011) 3228–3231.
[25] Y.A. Tayade, S.A. Padvi, Y.B. Wagh, D.S. Dalal, Tetrahedron Lett. 56 (2015) 2441-2447.
[26] M. Wu, Q. Feng, H.D. Wan, J. Ma, Synth. Commun. 43 (2013) 1721-1726.
[27] A.B. Atar, J.T. Kim, K.T. Lim, Y.T. Jeong, Synth. Commun. 44 (2014) 2679-2691.
[28] R.H. Vekariya, K.D. Patel, H. Patel, Res. Chem. Intermed. 42 (2016) 4683–4696.
[29] J.M. Khurana, A. Chaudhary, Green Chem. Lett. Rev. 5 (2012) 633-638.
[30] S.U. Tekale, S.S. Kauthale, K.M. Jadhav, R.P. Pawar, J. Chem. (2013) ID 840954.
[31] R.H. Vekariya, K.D. Patel, H. Patel, Res. Chem. Intermed. 42 (2016) 7559-7579.
[32] B. Sushilkumar, S. Devanand, Acta Pharm. 52 (2002) 281-287.
[33] R. Boer, V. Gekeler, Drugs Future 20 (1995) 499-509.
[34] G.A. Wachter, M.C. Davis, J. Med. Chem. 41(1998) 2436-2438.
[35] S. Gullapalli, P. Ramarao, Neuropharmacology 42 (2002) 467-475.
[36] C.E. Sunkel, M. de Casa Juana, L. Santos, J. Med. Chem. 33 (1990) 3205-3210.
[37] V. Klusa, Drugs Future 20 (1995) 135-138.
[38] R.G. Retzel, C.C. Bollen, E. Maeser, K.F. Federlin, Drugs Future 17 (1992) 465-468.
[39] K. Ahmed, A.K. Jain, B. Dubey, B. Shrivastava, P. Sharma, S. Nadeem, Der Pharma Chem. 7 (2015) 52-65.
[40] V.L. Gein, M.I. Kazantseva, A.A. Kurbatova, M.I. Vahrin, Chem. Heterocycl. Compd. 46 (2010) 629-630.
StatisticsArticle View: 101PDF Download: 305