|
EL Bekkali, C., Bouyarmane, H., Laasri, S., Laghzizil, A., Saoiabi, A. (2018). Effects of metal oxide catalysts on the photodegradation of antibiotics effluent. Iranian Journal of Catalysis, 8(4), 241-247.Chaimaa EL Bekkali; Habiba Bouyarmane; Said Laasri; Abdelaziz Laghzizil; Ahmed Saoiabi. "Effects of metal oxide catalysts on the photodegradation of antibiotics effluent". Iranian Journal of Catalysis, 8, 4, 2018, 241-247.EL Bekkali, C., Bouyarmane, H., Laasri, S., Laghzizil, A., Saoiabi, A. (2018). 'Effects of metal oxide catalysts on the photodegradation of antibiotics effluent', Iranian Journal of Catalysis, 8(4), pp. 241-247.EL Bekkali, C., Bouyarmane, H., Laasri, S., Laghzizil, A., Saoiabi, A. Effects of metal oxide catalysts on the photodegradation of antibiotics effluent. Iranian Journal of Catalysis, 2018; 8(4): 241-247.
Effects of metal oxide catalysts on the photodegradation of antibiotics effluent
Article 1, Volume 8, Issue 4, Autumn 2018, Page 241-247
PDF (1.22 MB)
Document Type: Articles
Authors
Chaimaa EL Bekkali1; Habiba Bouyarmane1; Said Laasri2; Abdelaziz Laghzizil
1; Ahmed Saoiabi1
1Laboratoire de Chimie Appliquée des Matériaux, Université Mohamed V, Faculté des Sciences, BP.1014, Rabat, Morocco.
2Laboratoire des Sciences de l'Ingénieur Pour l'Énergie, École Nationale des Sciences Appliquées-El Jadida-Morocco.
Abstract
The current study examined the effect of metal oxide catalysts on the sorption and photocatalytic efficiencies for the removal of ciprofloxacin and ofloxacin in water. ZnO and TiO2 catalysts are prepared using a suitable method based on the sol-gel process, which have a great change in structural and textural properties. The structure and surface area of the synthesized catalysts were characterized, and used as sorbents/catalysts to remove antibiotics from water. Results showed a high adsorption capacity for the Titania oxide related to its great surface area, it is about 280 m2 g-1, compared to that of ZnO catalyst with only 19 m2 g-1. However, both photocatalysts exhibit a difference in photocatalytic activity versus both drugs. Therefore, ZnO, as a competitor catalyst for the TiO2, provides the most effective treatment of contaminated water with antibiotic pollutants to produce suitable reused water.
Keywords
ZnO; TiO2; Catalysts; Antibiotics; Photocatalytic activity, Removal
References
[1] V. Homen, L. Santos, J. Environ. Manage. 92 (2011) 2304-47.
[2] M. Amini, M. Khanavi, A. Shafiee, Iran. J. Pharm. Res. 2 (2004) 99-101.
[3] E. Zuccato, S. Castiglioni, R. Fanelli, G. Reitano, D. Calamari, New York, Springer-Verlag, 2004.
[4] N. Ajoudanian, A. Nezamzadeh-Ejhieh, Mater. Sci. Semicond. Proces. 36 (2015) 162-169.
[5] A. Pourtaheri, A. Nezamzadeh-Ejhieh, Chem. Eng. Res. Design. 104 (2015) 835-843.
[6] L. Elsellami, N. Hafidhi, F. Dappozze, A. Houas, C. Guillard, Chin. J. Catal. 36 (2015) 1818-1824.
[7] A.M. Ferrari-Lima, R.P.D. Souza, S.S. Mende, R.G. Marques, M.L.Gimenes, N.R.C. Fernandes-Machado, Catal. Today 241 (2015) 40-46.
[8] G.S. Pozan, A. Kambur, Chemosphere 105 (2014) 152-159.
[9] A. Nezamzadeh-Ejhieh, M. Bahrami, Des. Water Treat. 52 (2014) 3328-3337.
[10] A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, J. Ind. Eng. Chem. 21 (2015) 668-676.
[11] D. Li, H. Haneda, Chemosphere 51 (2003) 129-137.
[12] V. Srikant, V.D.R. Clarkea, J. Appl. Phys. 83 (1998) 5447-5451.
[13] E. Elmolla, M. Chaudhuri, J. Hazard. Mater. 173 (2011) 445-449.
[14] A. Nezamzadeh-Ejhieh, M. Bahrami, Des. Water Treat. 55 (2015) 1096-1104.
[15] G.H. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A.H. Mahvi, Int. J. Environ. Sci. Technol. 12 (2015) 603-616.
[16] R.A. Palominos, M.A. Mondaca, A. Giraldo, G. Penuela, M. Perez-Moya, H.D. Mansilla, Catal. Today 144 (2006) 100-112.
[17] H. F. Moafi, Iran. J. Catal. 6 (2016) 281-292.
[18] B. Khodadadi, Iran. J. Catal. 6 (2016) 305-311.
[19] A. Besharati-Seidani, Iran. J. Catal. 6 (2016) 447-454.
[20] S. Dianat, Iran. J. Catal. 8 (2018) 121-132.
[21] S. Feizpoor, A. Habibbi-Yangjeh, Mater. Res. Bull. 99 (2018) 93-102.
[22] M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, J. Mater. Chem. A 2 (2014) 637-644.
[23] R. Nosrati, A. Olad, R. Maramifar, Environ. Sci. Pollut. 19 (2012) 2291-2299.
[24] H.R. Pouretedal, M. Ahmadi, Iran. J. Catal. 3 (2013) 149-155.
[25] L. Vafayi, S. Gharibe, Iran. J. Catal. 5 (2015) 365-371.
[26] M. Giahi, A. H. Dargahi, Iran. J. Catal. 6 (2016) 381-387.
[27] M. Bordbar, S. Forghani-Pilerood, A. Yeganeh-Faal, Iran. J. Catal. 6 (2016) 415-421.
[28] S. Aghdasi, M. Shokri, Iran. J. Catal. 6 (2016) 481-487.
[29] M. Pirhashemi, A. Habibi-Yangjeh, Sep. Purif. Technol. 193 (2018) 69-80.
[30] H. Bouyarmane, S. Saoiabi, I. El Hanbali, M. El Karbane, A. Rami, S. Masse, A. Laghzizil, T. Coradin, Eur. Phys. J. Spec. Top. 224 (2015) 1861-1869.
[31] M. Anari-Anaraki, A. Nezamzadeh-Ejhieh, J. Colloid Interf. Sci. 440 (2015) 272-281.
[32] S.A. Hosseini, R. Saeedi, Iran. J. Catal. 7 (2017) 37-46.
[33] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143-150.
[34] A.Nezamzadeh-Ejhieh, S. Hushmandrad, Appl. Catal. A 388 (2010) 149-159.
[35] D. Li, W. Shi, Chin. J. Catal. 37 (2016) 792-799.
[36] I. Michael, E. Hapeshi, C. Michael, D. Fatta-Kassinos, Water Res. 44 (2010) 5450-5462.
[37] A. Kaur, G. Gupta, A.O. Ibhadon, D.B. Salunke, A.S.K. Sinha, S.K. Kansal, J. Environ. Chem. Eng. 6 (2018) 3621-3630.
[38] M. El-Kemary, H. El-Shamy, I. El-Mehasseb, J. Lumin. 130 (210) 2327-2331.
[39] V. Augugliaro, M. Litter, L. Palmisano, J. Soria, J. Photochem. Photobiol. C 7 (2006) 127-144.
[40] S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, J. Environ. Manage. 92 (2011) 311-330.
StatisticsArticle View: 179PDF Download: 166