Nano-SiO2/hexamethylenetetramine promoted synthesis of pyrano[2,3-c] pyrazoles under solvent-free conditions

Document Type: Articles

Authors

Department of Chemistry, Faculty of Sciences, Yazd University, P.O. Box 89195-741, Yazd, I.R. Iran.

Abstract

In this study, the nano-SiO2/hexamethylenetetramine as a new basic heterogeneous nanocatalyst was prepared and used for the synthesis of pyranopyrazole via the four-component reaction. Various aldehydes, hydrazine hydrate, ethyl acetoacetate and malononitrile were reacted at room temperature under solvent-free and grinding conditions. The morphology and structure of nano-catalyst were investigated by techniques such as FT-IR spectroscopy, FESEM, TEM, XRD, CHNS elemental analyzer and TGA. The structure of pyranopyrazoles was determined by spectroscopic data of FTIR and NMR. The principal affairs of this procedure are easy work-up, high yields, mild conditions and short reaction times.

Keywords


[1] T. Ahmadi, G.M. Ziarani, P. Gholamzadeh, H. Mollabagher, Tetrahedron: Asym. 28 (2017) 708-724.
[2] C. Hulme, S. Chappeta, C. Griffith, Y.-S. Lee, J. Dietrich, Tetrahedron Lett. 50 (2009) 1939-1942.
[3] B.M. Trost, Science 254 (1991) 1471-1477.
[4] Z.-L. Shen, S.-J. Ji, Synth. Commun. 39 (2009) 775-791.
[5] K. Tanaka, F. Toda, Chem. Rev. 100 (2000) 1025-1074.
[6] A.R. Moosavi-Zare, M.A. Zolfigol, E. Noroozizadeh, M. Tavasoli, V. Khakyzadeh, A. Zare, New J. Chem. 37 (2013) 4089-4094.
[7] O. Mohammadi, M. Golestanzadeh, M. Abdouss, New J. Chem. 41 (2017) 11471-11497.
[8] M. Abdollahi-Alibeik, A. Moaddeli, K. Masoomi, RSC Adv. 5 (2015) 74932-74939.
[9] B. Singh, Synlett 19 (2011) 2903-2904.
[10] J.M. Dreyfors, S.B. Jones, Y. Sayed, Am. Ind. Hyg. Assoc. J. 50 (1989) 579-585.
[11] A.S. Waghmare, S.S. Pandit, J. Saudi Chem. Soc. 21 (2017) 286-290.
[12] T. Denzel, H. Hoehn, US. Patent 3903096 Chem. Abst. 83 (1975) 2026257.
[13] J.L. Wang, D.X. Liu, Z.J. Zhang, S.M. Shan, X.B. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri, Z.W. Huang, Proc. Natl. Acad. Sci. 97 (2000) 7124-7129.
[14] J.F. Fisher, S.O. Meroueh, S. Mobashery, Chem. Rev. 105 (2005) 395-424.
[15] S.C. Kuo, L.J. Huang, H. Nakamura, J. Med. Chem. 27 (1984) 539-544.
[16] S.R. Mandha, S. Siliveri, M. Alla, V.R. Bommena, M.R. Bommineni, S. Balasubramanian, Bioorg. Med. Chem. Lett. 22 (2012) 5272-5278.
[17] M.E.A. Zaki, H.A. Soliman, O.A. Hiekal, A.E. Rashad, Z. Naturforsch. C. 61 (2006) 1-5.
[18] D. Capodanno, J.L. Ferreiro, D.J. Angiolillo, J. Thromb. Haemost. 11 (2013) 316-329.
[19] A. Moshtaghi Zonouz, I. Eskandari, H.R. Khavasi, Tetrahedron Lett. 53 (2012) 5519-5522.
[20] F.M. Abdelrazek, P. Metz, N.H. Metwally, S.F. El‐Mahrouky, Arch. Pharm. Chem. Life Sci. 339 (2006) 456-460.
[21] N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G.S Robertson, A.E. Surgenor, Bioorg. Med. Chem. 14 (2006) 4792-4802.
[22] H. Adibi, L. Hosseinzadeh, S. Farhadi, F. Ahmadi, J. Rep. Pharm. Sci. 2 (2013) 116-124.
[23] C. Derabli, I. Boualia, A. B. Abdelwahab, R. Boulcina, C. Bensouici, G. Kirsch, A. Debache, Bioorg. Med. Chem. Lett. 28 (2018) 2481–2484
[24] K. Kanagaraj, K. Pitchumani, Tetrahedron Lett. 51 (2010) 3312-3316.
[25] J.B. Gujar, M.A. Chaudhari, D.S. Kawade, M.S. Shingare, Tetrahedron Lett. 55 (2014) 6030-6033.
[26] W. Mingshu, F. Qinqin, W. Dehui, M. Jinya, Synth. Commun. 43 (2013) 1721-1726.
[27] M.A. Zolfigol, M. Tavasoli, A.R. Moosavi-Zare, P. Moosavi, H.G. Kruger, M. Shiri, V. Khakyzadeh, RSC Adv. 3 (2013) 25681-25685.
[28] C.-F. Zhou, J.-J. Li, W.-K. Su, Chin. Chem. Lett. 27 (2016) 1686-1690.
[29] H. Mecadon, M.R. Rohman, M. Rajbangshi, B. Myrboh, Tetrahedron Lett. 52 (2011) 2523-2525.
[30] M.B.M. Reddy, V.P. Jayashankara, M.A. Pasha, Synth. Commun. 40 (2010) 2930-2934.
[31] J. Ebrahimi, A. Mohammadi, V. Pakjoo, E. Bahrmzade, A. Habibi, J. Chem. Sci. 124 (2012) 1013-1017.
[32] R.Y. Guo, Z.M. An, L.P. Mo, S.T. Yang, H. Liu, S.X. Wang, Z.H. Zhang, Tetrahedron 69 (2013) 9931-9938.
[33] Y.M. Litvinov, A.A. Shestopalov, L.A. Rodinovskaya, A.M. Shestopalov, J. Comb. Chem. 11 (2009) 914-919.
[34] S.H.S. Azzam, M.A. Pasha, Tetrahedron Lett. 53 (2012) 6834-6837.
[35] G. Brahmachari, B. Banerjee, ACS Sustain. Chem. Eng. 2 (2014) 411-422.
[36] S. Paul, K. Pradhan, S. Ghosh, S.K. De, A.R. Das, Tetrahedron 70 (2014) 6088-6099.
[37] M. Jafari Nasab, A.R. Kiasat, R. Zarasvandi, React. Kinet. Mech. Catal. 124 (2018) 767–778.
[38] V.S. Tangeti, K.R. Babu, G.V.S. Prasad, T. Ramu, C.V. Rao, J. Iran. Chem. Soc. 15 (2018) 823-829.
[39] A. Sharma, D. Kumar, P. U. Manohar, S. Pande, A. Dalvi, P. Shukla, Mater. Res. Express 5 (2018) 025101.
[40] E. Safari, A. Hasaninejad, ChemistrySelect 3 (2018) 3529–3533.
[41] R. Ghorbani‐Vaghei, V. Izadkhah, Appl. Organometal. Chem. 32 (2018) e4025.
[42] H. Firouzabadi, N. Iranpoor, H. Hazarkhani, Phosphorus Sulfur Silicon Relat. Elem. 177 (2002) 2847–2858.
[43] M. Babaie, H. Sheibani, Arab. J. Chem. 4 (2011) 159-162.
[44] P. Shukla, A. Sharma, B. Pallavi, P.N. Jha, R. Prakash Singh, Heterocycles 91 (2015) 1615-1627.