Novel and cost-effective biocatalyst consisting of nanofibrillated cellulose and TiCl3 for the synthesis of 2,3'-dihydroquinazolin-4-(1H)-ones

Document Type: Articles

Authors

Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University. P.O. Box 1993893973, Tehran, Iran.

Abstract

A novel and cost-effective catalyst for synthesis of 2,3'-dihydroquinazolin-4-(1H)-ones was developed utilizing a combined nanocomposite obtained from bonding TiCl3 to hydroxyl groups of nanofibrillated cellulose as a green and inexpensive support.The structure of the catalyst was investigated using the Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) techniques and transmission electron microscopy (TEM). The prepared new nanopolymer-based composite has been investigated successfully to obtain some 2,3'-dihydroquinazolin-4-(1H)-ones via the reaction of 2-aminobenzamide and various kinds of aldehydes/ cyclic ketones in refluxing ethanol. Short reaction times, the low amount of catalyst, high yields of products, utilizing a wide-range of aldehydes/ ketones, easy work-up procedure, in addition to the accelerating effect of the newly synthesized biodegradable nano composite, are some highlighted features of the reported protocol.

Keywords


[1] S. Azad, B.B.F. Mirjalili, Res. Chem. Intermed. 43 (2017) 1723-1734.
[2] S. Azad, B.B.F. Mirjalili, RSC Adv. 6 (2016) 96928-96934.
[3] R.S. Yang, A. Beard, H. Sheng, L.K. Zhang, R. Helmy, Org. Process Res. Dev. 20 (2016) 59-64.
[4] M. Kakugo, T. Miyatake, K. Mizunuma, Macromolecules 24 (1991) 1469-1472.
[5] X.H. Yang, Z. Wang, X.L. Sun, Y. Tang, Dalton Trans. (2009) 8945-8954.
[6] J.T. Li, Z.P. Lin, N. Qi, T.S. Li, Synth. Commun. 34 (2004) 4339-4348.
[7] M.A. Maslov, N.G. Morozova, T.V. Solomatina, O.A. Sergeeva, D.A. Cheshkovb, G.A. Serebrennikova, Mendeleev Commun. 21 (2011) 137-139.
[8] J.H. Leal, Y. Cantu, D.F. Gonzalez, J.G. Parsons, Inorg. Chem. Commun. 84 (2017) 28-32.
[9] B. Xue, T. Sun, F. Mao, L.C. Sun, W. Yang, Z.D. Xu, X. Zhang, Mater. Res. Bull. 46 (2011) 1524-1529.
[10] Y. Takaya, T. Chiba, M. Tanitsu, K. Murata, H.S. Kim, Y. Wataya, Y. Oshima, Parasitol. Int. Suppl. 47 (1998) 380.
[11] P.P. Kung, M.D. Casper, K.L. Cook, L. Wilson-Lingardo, L.M. Risen, T.A. Vickers, R. Ranken, L.B. Blyn, J. R. Wyatt, P.D. Cook, D.J. Ecker, J. Med. Chem. 42 (1999) 4705-4713.
[12] M. Zappala, S. Grasso, N. Micale, G. Zuccala, F.S. Menniti, G. Ferreri, G.D. Sarroc, C.D. Michelid, Bioorg. Med. Chem. Lett. 13 (2003) 4427-4430.
[13] F. Havasi, A. Ghorbani-Choghamarani, F. Nikpour, Microporous Mesoporous Mater. 224 (2016) 26-35.
[14] B.H. Chen, J.T. Li, G.F. Chen, Ultrason. Sonochem. 23 (2015) 59-65.
[15] A. Bharathi, S.M. Roopan, A. Kajbafvala, R.D. Padmaja, M.S. Darsana, G.N. Kumari, Chin. Chem. Lett. 25 (2014) 324-326.
[16] M. Hossaini, R. Heydari, M.T. Maghsoodlou, Iran. J. Catal. 6 (2016) 363-368.
[17] A. Fakhri, A. Naghipour, Z. Haji Ghasemi, Solid State Sci. 83 (2018) 107-114.
[18] H.R. Safaei, M. Shekouhy, S. Ghorbanzadeh, ChemistrySelect 3 (2018) 4750–4759.
[19] H. Batmani, N. Noroozi Pesyan, F. Havasi, Microporous Mesoporous Mater. 257 (2018) 27-34.
[20] R. Ramesh, G. Sankar, J. Grzegorz Malecki, A. Lalitha, J. Iran. Chem. Soc. 15 (2018) 1-9.
[21] B.D. Rupnar, T.R. Kachave, P.D. Jawale, S.U. Shisodia, R.P. Pawar, J. Iran. Chem. Soc. 14 (2017) 1853–1858.
[22] M. Hajjami, F. Ghorbani, Z. Yousofvand, Appl. Organomet. Chem. 31 (2017) e3843.
[23] S. Umrao, S. Abraham, F. Theil, S. Pandey, V. Ciobota, P.K. Shukla, C.J. Rupp, S. Chakraborty, R. Ahuja, J. Popp, B. Dietzek, A. Srivastava, RSC Adv. 4 (2014) 59890-59901.
[24] Y. Chen, H. Gao, J. Xiang, X. Dong, Y. Cao, Mater. Res. Bull. 99 (2018)29-36.
[25] B. B. F. Mirjalili, A. Bamoniri, S. Azad, J. Iran. Chem. Soc. 14 (2017) 47-55.
[26] M. Sarvestani, R. Azadi, Appl. Organometal. Chem. 31 (2017) e3667.
[27] A. Rostami, A. Tavakoli, Chin. Chem. Lett. 22 (2011) 1317-1320.
[28] V.B. Labade, P.V. Shinde, M.S. Shingare, Tetrahedron Lett. 54 (2013) 5778-5780.
[29] J. Safari, S. Gandomi-Ravandi, J. Mol. Catal. A: Chem. 390 (2014)1-6.
[30] J.X. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, W. Su, Tetrahedron Lett. 49 (2008) 3814-3818.
[31] A. Ghorbani-Choghamarani, G. Azadi, RSC Adv. 5 (2015) 9752-9758.
[32] M. Wang, T.T. Zhang, Z.G. Song, Chin. Chem. Lett. 22 (2011) 427–430.
[33] M. Sharma, S. Pandey, K. Chauhan, D. Sharma, B. Kumar, P.M.S. Chauhan, J. Org. Chem. 77 (2012) 929-937.
[34] T.A. Kilore Smith, H. Stephen, Tetrahedron 1 (1957) 38-44.
[35] R.J. Alaimo, H.E. Russel, J. Med. Chem. 15 (1972) 335-336.
[36] A. Shaabani, A. Maleki, H. Mofakham, Synth. Commun. 38 (2008) 3751-3759.
[37] H.R. Shaterian, A.R. Oveisi, Chin. J. Chem. 27 (2009) 2418-2422.
[38] A. Davoodnia, S. Allameh, A.R. Fakhari, Chin. Chem. Lett. 21 (2010) 550-553.