2-Aminoethanesulfonic acid immobilized on epichlorohydrin functionalized Fe3O4@WO3 (Fe3O4@WO3-EAE-SO3H (III)): A heterogeneous and reusable nanocatalyst for synthesis of α,α'-bis (substituted-benzylidene) cycloalkanones in solvent-free conditions

Document Type: Articles

Authors

Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.

Abstract

A green, efficient, chemoselective, facile and clean procedure is described and discussed for the synthesis of α, α'-bis (substituted-benzylidene) cycloalkanones in solvent-free conditions. The condensation reaction was carried out through the reaction of aromatic aldehydes with cycloalkanones in the presence of Fe3O4@WO3 (Fe3O4@WO3-EAE-SO3H (III)) nanoparticles as the catalyst. The nanostructured catalyst with the spherical shape, particle size in the range of 7-23 nm and superparamagnetic behavior may be referred as an excellent replacement for Brønsted acids. The reaction proceeds rapidly at room temperature, giving high yields of products. No self-condensation product was produced. Easy separation of the catalyst from the reaction mixture by means of an external magnetic field and re-using up to seven times without loss of activity are the salient features of the present method.

Keywords


[1] J. Deli, T. Lóránd, D. Szabo, A. Foldesi, Pharmazie 39 (1984) 539-540.
[2] N. J. Leonard, L. A. Miller, J. W. Berry, J. Am. Chem. Soc. 79 (1957) 1482-1485.
[3] M. A. Ciufolini, N. E. Byrne, J. Am. Chem. Soc. 113 (1991) 8016-8024.
[4] T. P. Robinson, R. B. Hubbard, T. J. Ehlers, J. L. Arbiser, D. J. Goldsmith, J. P. Bowen, Bioorg. Med. Chem. 13 (2005) 4007-4013.
[5] A. T Dinkova-Kostova, C. Abeygunawardana, P. Talalay, J. Med. Chem. 41 (1998) 5287-5296.
[6] (a) J. R. Dimmock, M. P. Padmanilayam, G. A. Zello, K. H. Nienaber, T. M. Allen, C. L. Santos, E. D. Clercq, J. Balzarini, E. K. Manavathu, J. P. Stables, Eur. J. Med. Chem. 38 (2003) 169-177. (b) A. Modzelewska, C. Pettit, G. Achanta, N. E. Davidson, P. Huang, S. R. Khan, Bioorg. Med. Chem. 14 (2006) 3491-3495.
[7] (a) C. Piantadosi, I. H. Hall, J. L. Irvine, G. L. Carlson, J. Med. Chem. 16 (1973) 770-795. (b) J. Kawamata, K. Inoue, T. Inabe, M. Kiguchi, M. Kato, Y. Taniguchi, Chem. Phys. Lett. 249 (1996) 29-34.
[8] E. L. Gall, F. Texier-Boullet, J. Hamelin, Synth. Commun. 29 (1999) 3651-3657.
[9] T. A. Geissman, R. O. Clinton, J. Am. Chem. Soc. 68 (1946) 697-700.
[10] T. Lin, N. H. Cromwell, C. A. Kingsbury, J. Heterocycl. Chem. 22 (1985) 21-24.
[11] F. Fringuelli, G. Pani, O. Piermatti, F. Pizzo, Tetrahedron 50 (1994) 11499-11508.
[12] F. Catti, P. S. Kiuru, A. M. Z. Slawin, N. J. Westwood, Tetrahedron 64 (2008) 9561-9566.
[13] J. V. Sinistierra, A. Garcia-Raso, J. A. Cabello, J. M. Marinas, Synthesis (1984) 502-504.
[14] B. Das, P. Thirupathi, I. Mahender, K. R. Reddy, J. Mol. Catal. A: Chem. 247 (2006) 182-185.
[15] K. Irie, K. I. Watanabe, Bull. Chem. Soc. Jpn. 53 (1980) 1366-1371.
[16] T. Nakano, S. Irifune, S. Umano, A. Inada, Y. Ishii, M. Ogawa, J. Org. Chem. 52 (1997) 2239-2244.
[17] T. Nakano, T. Migita, Chem. Lett. 12 (1993) 2157-2158.
[18] M. Zheng, L. Wang, J. Shao, Q. Zhong, Synth. Commun. 27 (1997) 351-354.
[19] N. Iranpoor, F. Kazemi, Tetrahedron 54 (1998) 9475-9480.
[20] W. Bao, Y. Zhang, T. Ying, Synth. Commun. 26 (1993) 503-507.
[21] N. Iranpoor, B. Zeynizadeh, A. J. Aghapour, Chem. Res. Synop. 9 (1999) 554-555.
[22] T. Dewa, T. Saiki, Y. Aoyama, J. Am. Chem. Soc. 123 (2001) 502-503.
[23] J. S. Yadav, B. V. S. Reddy, A. Nagaraju, J. A. R. P. Sarma, Synth. Commun. 32 (2002) 893-896.
[24] P. Salehi, M. M. Khodaei, M. A. Zolfigol, A. Keyvan, Monatsh. Chem. 133 (2002) 1291-1295.
[25] X. Zhang, X. Fan, H. Niu, J. Wang, Green Chem. 5 (2003) 267-269.
[26] G. Deng, T. Ren, Synth. Commun. 33 (2003) 2995-3001.
[27] G. Sabitha, G. S. K. K. Reddy, K. B. Reddy, J. S. Yadav, Synthesis (2004) 263-266.
[28] Y. Zhu, Y. Pan, Chem. Lett. 33 (2004) 668-669.
[29] Z. G. Hu, J. P. Liu, P. L. Zeng, Z. B. Dong, J. Chem. Res. Synop. 1 (2004) 55-56.
[30] L. Wang, J. Sheng, H. Tian, J. Han, Z. Fan, C. Qian, Synthesis (2004) 3060-3064.
[31] Y. Q. Cao, Z. Dai, R. Zhang, B. H. Chen, Synth. Commun. 35 (2005) 1045-1049.
[32] A. K. Mallik, R. Pal, T. K. Mandal, Indian J. Chem. 46B (2007) 2056-2059.
[33] A. Arnold, M. Markert, R. Mahrwald, Synthesis (2006) 1099-1102
[34] K. Miura, T. Nakagawa, A. Hosomi, J. Am. Chem. Soc. 124 (2002) 536-537.
[35] A. Lahyani, M. Chtourou, M. H. Frikha, M. Trabelsi, Ultrason. Sonochem. 20 (2003) 1296-1301.
[36] Y. Riadi, R. Mamouni, R. Azzalou, R. Boulahjar, Y. Abrouki, M. E. Haddad, S. Routier, G. Guillaumet, S. Lazar, Tetrahedron Lett. 51 (2010) 6715-6717.
[37] Y. Wu, J. Hou, Y. Liu, M. Zhang, C. Tung, Y. Wang, Tetrahedron 72 (2016) 1511-1516.
[38] A. F. M. M. Rahman, B. S. Jeong, D. H. Kim, J. K. Park, E. S. Lee, Y. Jahng, Tetrahedron 63 (2007) 2426-2431.
[39] J. Li, W. Su, N. Li, Synth. Commun. 35 (2005) 3037-3043.
[40] C. Y. Zhao, J. Y. Liu, Y. Wang, X. J. Zhao, B. Yuan, M. M. Yue, Synth. Commun. 44 (2014) 827-835.
[41] J. T. Li, W. Z. Yang, G. F. Chen, T. S. Li, Synth. Commun. 33 (2003) 2619-2625.
[42] N. Razavi, B Akhlaghinia, New J. Chem. 40 (2016) 447-457.
[43] S. Rezazadeh, B. Akhlaghinia, E. K. Goharshadi, H. J. Sarvari, J. Chin. Chem. Soc. 61 (2014) 1108-1114.
[44] M. S. Ghasemzadeh, B. Akhlaghinia, Bull. Chem. Soc. Jpn. 90 (2017) 1119-1128.
[45] S. S. E. Ghodsinia, B. Akhlaghinia, R. Jahanshahi, RSC Adv. 6 (2016) 63613-63623.
[46] M. S. Ghasemzadeh, B. Akhlaghinia, ChemistrySelect 4 (2019) 1542-1555.
[47] M. S. Ghasemzadeh, B. Akhlaghinia, New J. Chem. (2019) doi: 10.1039/C9NJ00352E.
[48] N. Mohammadian, B. Akhlaghinia, Res. Chem. Intermed. 43 (2017) 3325-3347.
[49] N. Mohammadian, B. Akhlaghinia, Res. Chem. Intermed. 42 (2017) 1085-1103.
[50] M. S. Ghasemzadeh, B. Akhlaghinia, ChemistrySelect 3 (2018) 3161-3170.
[51] (a) M. Zarghani, B. Akhlaghinia, Appl. Organomet. Chem. 29 (2015) 683-689. (b) M. Zarghani, B. Akhlaghinia, Bull. Chem. Soc. Jpn. 89 (2016) 1192-1200.
[52] J. R. Dimmock, N. M. Kandepu, A. J. Nazarali, T. P. Kowalchuk, N. Motaganahalli, J. W. Quail, P. A. Mykytiuk, G. F. Audette, L. Prasad, P. Perje, T. M. Allen, C. L. Santos, J. Szydlowski, E. D. Clercq, J. Balzarini, J. Med. Chem. 42 (1999) 1358-1366.
[53] (a) P. J. Smith, J. R. Dimmock, W. A. Turner, Can. J. Chem. 51 (1973) 1458-1470. (b) A. Hassner, T. C. Mead, Tetrahedron 20 (1964) 2201-2210.
[54] S. Z. D. Heirati, F. Shirini, A. F. Shojaei, Res. Chem. Intermed. 43 (2017) 6167-6186
[55] M. D. Argyle, C. H. Bartholomew, Catalysts 5 (2015) 145-269.
[56] W. B. Yi, C. Cai, J. Fluorine Chem. 126 (2005) 1553-1558.
[57] A. Solhy, W. Amer, M. Karkouri, R. Tahir, A. E. Bouari, A. Fihri, M. Bousmina, M. Zahouily, J. Mol. Catal. A: Chem. 336 (2011) 8-15.
[58] B. Krishnakumar, M. Swaminathan, J. Mol. Catal. A: Chem. 350 (2011) 16-25.
[59] M. M. Khodaei, K. Bahrami, M. Khedri, J. Chin. Chem. Soc. 54 (2007) 807-810.
[60] J. X. Wang, L. Kang, Y. Hu, B. G. Wei, Synth. Commun. 32 (2002) 1691-1696.
[61] A. Amoozadeh, E. Tabrizian, S. Rahmani, C. R Chim. 18 (2015) 848-857.
[62] E. Rafiee, F. Rahimi, Monatsh. Chem. 144 (2013) 361-367.
[63] X. Wei, Z. Y. Du, X. Zheng, X. X. Cui, A. Conney, K. Zhang, Eur. J. Med. Chem. 53 (2012) 235-245.
[64] G. Liang, L. Shao, Y. Wang, C. Zhao, Y. Chu, J. Xiao, Y. Zhao, X. Li, S. Yang, Bioorg. Med. Chem. 17 (2009) 2623-2631.
[65] T. Hosoya, A. Nakata, F. Yamasaki, F. Abas, K. Shaari, N. H. Lajis, H. Morita, J. Nat. Med. 66 (2012) 166-176.
[66] G. Liang, X. Li, L. Chen, S. Yang, X. Wu, E. Studer, E. Gurley, P. Hylemon, F. Ye, Y. Li, H. Zhou, Bioorg. Med. Chem. Lett. 18 (2008) 1525-1529.
[67] X. Wang, Z. Han, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 51 (2012) 936-940.