Regularities of solid-phase interaction of tin and molybdenum oxides: Catalytic properties

Document Type: Articles


1 Department of Inorganic Technology, Ivanovo State University of Chemistry and Technology, Sheremetievskiy Ave., 7, Ivanovo, 153000, Russia.

2 Department of Technology of Fine Organic Synthesis, Ivanovo State University of Chemistry and Technology, Sheremetievskiy Ave., 7, Ivanovo, 153000, Russia.


The interaction in the system of SnO2 and h-MoO3 prepared by their joint mechanical activation in a roller-ring vibratory mill was investigated. A series of catalysts was prepared with SnO2: h-MoO3 molar ratio 1:1; 1:2.3; 2.3:1 and 5.7:1. The catalysts were characterized by various techniques including X-ray phase, X-ray diffraction (XRD) and synchronous thermal analysis, scanning electron microscopy (SEM), BET method. An important effect of the introduction of molybdenum atoms into the structure of SnO2 was lattice defect. Heat treatment of the mechanically activated mixture at a temperature of 600–750  resulted in obtaining crystalline Sn(MoO4)2. The catalytic activity of the samples was investigated by the oxidative dehydrogenation of methanol. The results reported that varying the SnO2:MoO3 ratio allows adjusting the selectivity of the methanol conversion process over methyl formate and dimethyl ether.


[1] R.N. Rumyantsev, A.A. Il'in, A.P. Il'in, I.V. Pazukhin, Theor. Exp. Chem. 47 (2011) 41-44.
[2] T.G. Alkhazov, K.Y.U. Adzhamov, F.M. Poladov, React. Kinet. Catal. Lett. 7 (1977) 65-68.
[3] F.J. Berry, C. Hallett, Inorg. Chim. Acta. 98 (1985) 69-72.
[4] S.T. Yoshihiko, M. Atsumu Ozaki, J. Catal. 17 (1970) 132-142.
[5] L.V. Bogutskaya, S.V. Khalameida, A.V. Zazhigalov, A.I. Kharlamov, L.V. Lyashenko, O.G. Byl', Theor. Exp. Chem. 35 (1999) 242–246.
[6] M. Ai, J. Catal. 77 (1982) 279-288.
[7] M. Bowker, A.F. Carley, M. House, Catal. Lett. 120 (2008) 34–39.
[8] M.P. House, M.D. Shannon, M. Bowker, Catal. Lett. 122 (2008) 210–213.
[9] E. Söderhjelm, M.P. House, N. Cruise, J. Holmberg, M. Bowker, J.-O. Bovin, A. Andersson, Top. Catal. 50 (2008) 145–155.
[10] A.A. Il’in, K.K. Dao, R.N. Rumyantsev, A.P. Il’in, K.A. Petukhova, V.A. Goryanskaya, Russ. J. Appl. Chem. 90 (2017) 1433-1438.
[11] T.G. Alkhazov, K.Y.U Adzhamov, F.M. Poladov, React. Kiet. Catal. Lett. 7 (1977) 65-68.
[12] A.A. Davydov, React. Kiet. Catal. Lett. 19 (1982) 377-382.
[13] H. Kösea, A.O. Aydina, H. Akbulutb, Acta Phys. Pol. A. 125 (2014) 345-347.
[14] E.G. Avvakumov, M. Senna, N.V. Kosova, Soft mechanochemical synthesis, Springer, Boston, 2001.
[15] G. Ludwig, Untersuchungsmethoden zur Charakterisierung Mechanisch Aktivierten Festkörpern, ed by Z. Juhasz, Közdok Pubk., Budapest, (1978), p. 113–198.
[16] T. Ekström, C. Chatfield, W. Wruss, J. Maly-Schreiber, Mater. Sci. 20 (1985) 1266-1274.
[17] W. Shumann, Minerals of the world, Sterling Publishing Company, Inc. (2008). p. 549.
[18] I.V. Babichev, A.A. Il'in, R.N. Rumyantsev, N.E. Nikonorova, A.P. Il'in, Russ. J. Appl. Chem. 87 (2014) 298-302.
[19] M. Ai, Appl. Catal. 11 (1984) 259-270.
[20] T.P. Minyukova, I.I. Simentsova, A.V. Khasin, N.V. Shtertser, N.A. Baronskaya, A.A. Khassin, T.M. Yurieva, Appl. Catal. A 237 (2002) P.171-180.
[21] L. Shlegel, D. Gushtik, A.I. Rozovskii, Kinet. Catal. 31 (1990) 1000-1003.
[22] A. Lycourghiotis, D. Vattis, P. Aroni, N. Katsanos, Z. Phys. Chem. Neue Fol. 121 (1980) 257-265.
[23] E.A. Makeeva, M.N. Rumyantseva, A.M. Gas’kov, Inorg. Mater. 41 (2005) 370-377.