The role of carburization temperature on the molybdenum carbide surface and their catalytic activity

Document Type: Articles


Department of Chemical Sciences, Faculty of Science, Adekunle Ajasin University, Akungba Akoko, Nigeria.


The surfaces of molybdenum carbide were varied by changing the carburization temperature between 823 and 1123 K. The surfaces of the catalytic material were investigated using in-situ temperature program carburization followed by temperature program reduction and oxidation. In-situ temperature program oxidation (TPO) showed the surfaces of the catalysts contain a similar amount of carbonaceous deposit, while temperature program reduction (TPR) showed their ability to consume hydrogen in different amounts. The result shows the surface of the carbide at 823 K contained oxygen, while those carburized at higher temperature (≥ 923 K) were pure carbide. The catalysts tested for hydroisomerization of n-heptane and the catalyst with oxycarbide surface showed higher activity and iso-heptane selectivity. Hence, carburization temperature plays a crucial role in the formation of an active catalyst.


[1] J.B. Claridge, A.P.E. York, A.J. Brungs, J. Catal. 100 (1998) 85–100.
[2] J.S. Lee, S.T. Oyama, M. Boudart, J. Catal. 133 (1987) 125–133.
[3] W. Wu, Z. Wu, C. Liang, J. Phys. Chem. B 107 (2003) 7088–7094.
[4] Z. Li, C. Chen, E. Zhan, Chem. Commun. 50 (2014) 4469-4471.
[5] A. Galadima, R.P.K. Wells, J.A. Anderson, Appl. Petrochem. Res. 1 (2012) 35–43.
[6] S.T. Oyama, C.C. Yu, S. Ramanathan, J. Catal. 184 (1999) 535–549.
[7] J.S. Lee, S. Locatelli, S.T. Oyam, M. Boudart, J. Catal. 125 (1990) 157–170.
[8] T.C. Xiao, A.P.E. York, V.C. Williams, Chem. Mater. 12 (2000) 3896–3905.
[9] P. Del Gallo, C. Pham-Huu, A.P.E. York, M.J. Ledoux, Ind. Eng. Chem. Res. 35 (1996) 3302–3310.
[10] E.A. Blekkan, C. Pham-Huu, M.J. Ledoux, J. Guille, Ind. Eng. Chem. Res. 33 (1994) 1657–1664.
[11] C. Pham-Hun, P. Del Gallo, E. Peschiera, M.J. Ledoux, Appl. Catal. A 132 (1995) 77–96.
[12] M.J. Ledoux, C. Pham-Huu, A.P.E. York, The Chemistry of Transition Metal Carbides and Nitrides, S.T. Oyama, Ed., Blackie New York, 1996, pp. 373–397.
[13] F.F. Oloye, A.J. McCue, J.A. Anderson, Catal. Today 277 (2016) 246-256.
[14] C. Bouchy, C. Pham-Huu, B. Heinrich, Appl. Catal. A 215 (2001) 175–184.
[15] M.J. Ledoux, P. Del Gallo, C. Pham-Huu, A.P.E. York, Catal. Today 27 (1996) 145–150.
[16] T. Matsuda, K. Watanabe, H. Sakagami, N. Takahashi, Adsorption 242 (2003) 267–274.
[17] T. Xiao, A.P.E. York, H. Al-Megren, C.R. Acad. Sci. Ser. IIc: Chim. 3 (2000) 451–458.
[18] C. Bouchy, C. Pham-Huu, B. Heinrich, J. Catal. 190 (2000) 92–103.
[19] N. Perret, X. Wang, L. Delannoy, J. Catal. 286 (2012) 172–183.
[20] F.F. Oloye, A.J. McCue, J.A. Anderson, Appl. Petrochem. Res. 6 (2016) 341-352.
[21] J. Song, Z.F. Huang, L. Pan, J.J. Zou, X. Zhang, L. Wang, ACS Catal. 5 (2015) 6594-6599.
[22] M.J. Ledoux, C. Pham-Huu, H. Dunlop, J. Guille, Stud. Surf. Sci. Catal. 75 (1993) 955-967.