Acacia concinna pod catalyzed synthesis of 2-arylbenzothia/(oxa)zole derivatives

Document Type: Articles

Authors

1 Department of Chemistry, Rajaram College, Kolhapur 416004, India.

2 Department of Chemistry, Y. C. Warana Mahavidyalaya, Warananagar, Kolhapur.416113, India.

Abstract

The expeditious synthesis of 2-aryl-benzothia/(oxa)zoles was carried out by the condensation of 2-aminothiophenol/2-aminophenol and diverse aryl aldehydes in presence of Acacia concinna as a biocatalyst under microwave irradiation. The catalytic process is associated with excellent yields, greener reaction conditions and the environmentally friendly microwave technique which are the striking features of the present protocol.

Keywords


[1] S.A. Sarode, J.M. Bhojane, J.M. Nagarkar, Tetrahedron Lett. 56 (2015) 206-210.
[2] J. Ma, G. Bao, L. Wang, W. Li, B. Xu, B. Du, J. Lv, X. Zhai, P. Gong, Eur. J. Med. Chem. 96 (2015) 173-186.
[3] E. Chugunova, C. Boga, I. Sazykin, S. Cino, G. Micheletti, A. Mazzanti, M. Sazykina, A. Burilov, L. Khmelevtsova, N. Kostina, ‎Eur. J. Med. Chem. 93 (2015) 349-359.
[4] S. Daravath, M.P. Kumar, A. Rambabu, N. Vamsikrishna, N. Ganji, Shivaraj, J. Mol. Struct. 1144 (2017) 147-158.
[5] A. Sairaman, F.C. Cardoso, A. Bispat, R.J. Lewis, P.J. Duggan, K.L. Tuck, Bioorg. Med. Chem. 26 (2018) 3046-3059.
[6] D. Gandhi, D.K. Agarwal, P. Kalal, A. Bhargava, D. Jangid, S. Agarwal, Phosphorus Sulfur Silicon Relat Elem. 193 (2018) 840-847.
[7] V.S. Padalkar, B.N. Borse, V.D. Gupta, K.R. Phatangare, V.S. Patil, P.G. Umape, N. Sekar, Arab. J. Chem. 9 (2016) S1125-S1130.
[8] Y. Li, Q. Hu, C.H. Chen, X.L. Wang, D.W. Gao, ‎Bioresour. Technol. 236 (2017) 1-10.
[9] F.M. Shaikh, N.B. Patel, G. Sanna, B. Busonera, P.L. Colla, D.P. Rajani, J. Med. Chem. 24 (2015) 3129-3142.
[10] Y.H. Cho, C.Y. Lee, C.H. Cheon, Tetrahedron 69 (2013) 6565-6573.
[11] G.M. Ziarani, A. Badiei, M.S. Nahad, M. Hassanzadeh, Eur. J. Chem. 3 (2012) 433-436.
[12] H.L. Ruise, H.B. Ortega, S.R. Lima, R. Santillan, N. Farfan, Tetrahedron Lett. 52 (2011) 4308-4312.
[13] M. Sayyahi, M. Gorjizadeh, S. Sayyahi, Iran. J. Catal. 8 (2018) 203-211.
[14] A.V. Borhade, B.K. Uphade, Iran. J. Catal. 6 (2016) 197-201.
[15] R.D. Viirre, G. Evindar, R.A. Batey, J. Org. Chem. 73 (2008) 3452-3459.
[16] M. Radi, S. Saletti, M. Botta, Tetrahedron Lett. 49 (2008) 4464-4466.
[17] R. Wang, X.X. Lub, X.Q. Yu, L. Shi, Y. Sun, J. Mol. Catal. A: Chem. 266 (2007) 198-201.
[18] F.M. Moghaddam, G.R. Bardajee, H. Ismaili, S.M.D. Taimoory, Synth. Commun. 36 (2006) 2543-2548.
[19] P. Bandyopadhyay, M. Sathe, S. Ponmariappan, A. Sharma, P. Sharma, A.K. Srivastava, M.P. Kaushik, Bioorg. Med. Chem. Lett. 21 (2011) 7306-7309.
[20] T. Jadhav, B. Dhokale, S.M. Mobin, R. Misra, RSC Adv. 5 (2015) 29878-29884.
[21] R.M.F. Batista, S.P.G. Costa, M.M.M. Raposo, Tetrahedron Lett. 45 (2004) 2825-2828.
[22] B.B.F. Mirjalili, A. Bamoniri, M.A. Mirhoseinia, Iran. J. Catal. 6 (2016) 23-27.
[23] M. Zendehdel, K. Khosravi, M. Javadizadeh, Iran. J. Catal. 5 (2015) 333-337.
[24] B. Maleki, M. Baghayeri, S. M. Vahdat, A. Mohammadzadeh, S. Akhoondi, RSC Adv. 5 (2015) 46545-46551.
[25] B. Maleki, H. Salehabadi, M. K. Moghaddam, Acta Chim. Slov. 57 (2010) 741–745.
[26] B. Maleki, Collect. Czech. Chem. Commun. 76 (2011) 27-37.
[27] M. Okimoto, T. Yoshida, M. Hoshi, K. Hottori, M. Komata, K. Tomozawa, T. Chiba, Heterocycles 75 (2008) 35-42.
[28] T.G. Deligeorgiev, S. Kaloyanova, A. Vasilev, J.J. Vaquero, Phosphorus Sulfur Silicon Relat. Elem. 185 (2010) 2292-2302.
[29] D. Azarifar, B. Maleki, M. Setayeshnazar, Phosphorus Sulfur Silicon Relat. Elem. 184 (2009) 2097-2102.
[30] S. Pal, G. Patra, S. Bhunia, Synth. Commun. 39 (2009) 1196-1203.
[31] A.D. Kreuder, T. House-Knight, J. Whitford, E. Ponnusamy, P. Miller, N. Jesse, R. Rodenborn, S. Sayag, M. Gebel, I. Aped, I. Sharfstein, E. Manaster, I. Ergaz, A. Harris, L.N. Grice, ACS Sustainable Chem. Eng. 5 (2017) 2927-2935.
[32] C.O. Kappe, D. Dallinger, Nat. Rev. Drug Discovery 5 (2006) 51-63.
[33] X. Du, L. Zhao, X. He, H. Chen, W. Fang, W. Li, ‎Chem. Eng. Sci. 160 (2017) 72-79.
[34] H.V. Chavan, B.P. Bandgar, ACS Sustainable Chem. Eng. 1 (2013) 929-936.
[35] R. Gupta, P.K. Sahu, P.K. Sahu, S.K. Srivastava, D.D. Agarwal, Catal. Commun. 92 (2017) 119-123.
[36] P. Wang, S. Tang, A. Lei, Green Chem. 19 (2017) 2092-2095.
[37] Y. Kawashita, M. Hayashi, Molecules 14 (2009) 3073-3093.
[38] L. Ackermann, S. Barfusser, J. Pospech, Org. Lett. 12 (2010) 724-726.
[39] K.R. Kumar, P.V.V. Satyanarayana, B.S. Reddy, Der Pharma Chem. 4 (2012) 761-766.
[40] H. Sharghi, M. Aberi, M.M. Doroodmand, J. Iran. Chem. Soc. 9 (2012) 189-204.
[41] A.K. Chakraborti, S. Rudrawar, K.B. Jadhav, G. Kaur, S.V. Chankeshwara, Green Chem. 9 (2007) 1335-1340.
[42] A. Teimouri, A.N. Chermahini, H. Salavati, L. Ghorbanian, J. Mol. Catal. A: Chem. 373 (2013) 38-45.
[43] R. Daengngern, N. Kungwan, J. Lumin. 167 (2015) 132-139.
[44] S. Rostamizadeh, S.A. Housaini, Phosphorus Sulfur Silicon Relat. Elem. 180 (2005) 1321-1326.
[45] R.S. Pottorf, N.K. Chada, M. Katekevics, V. Ozola, V. Suna, H. Ghane, T. Regberg, M.R. Player, Tetrahedron Lett. 44 (2003) 175-178.
[46] M. Kidwai, V. Bansal, A. Saxena, S. Aerryb, S. Mozumdarb, Tetrahedron Lett. 47 (2006) 8049-8053.
[47] G.F. Chen, H.M. Jia, L.Y. Zhang, B.H. Chen, J.T. Li, Ultrason. Sonochem. 20 (2013) 627-632.
[48] K. Bahrami, Z. Karami, J. Exp. Nanosci. 13 (2018) 272-283.
[49] D. Dev, J. Chandra, N.B. Palakurthy, K. Thalluri, T. Kalita, B. Mandal, Asian J. Org. Chem. 5 (2016) 663-675.
[50] V.S. Padalakar, V.D. Gupta, V.S. Patil, K.R. Phatangare, P.G. Umape, N. Sekar, Green Chem. Lett. Rev 5 (2012) 139-145.
[51] J.Y. Hwang, Y.D. Gong, J. Comb. Chem. 8 (2006) 297-303.
[52] Y. Wang, K. Sarris, D.R. Sauer, S.W. Djuric, Tetrahedron Lett. 47 (2006) 4823-4826.
[53] D. Suresh, A. Dhakshinamoorthy, K. Pitchumani, Tetrahedron Lett. 54 (2013) 6415-6419.
[54] Y.M. Ha, J.Y. Park, Y.J. Park, D. Park, Y.J. Choi, J.M. Kim, E.K. Lee, Y.K. Han, J.-A. Kim, J.Y. Lee, H.R. Moon, H.Y. Chung, Bioorg. Med. Chem. Lett. 21 (2011) 2445-2449.