Effect of textural properties of Ni (Nano)-supported catalysts on the selective benzene hydrogenation in the vapor phase

Document Type: Articles


1 Department of Applied Chemistry, Kosar University of Bojnord, Bojnord, Iran.

2 Department of Petroleum Chemistry and Catalysis, Faculty of Chemistry and Petroleum Sciences, University of Shahid Beheshti, Tehran, 1983963113, Iran.


Ni catalysts supported on Nano porous catalysts were prepared by the impregnation method and tested for vapor phase hydrogenation of benzene. The textural and physico-chemical properties of Ni catalysts were characterized by the X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope and N2 adsorption-desorption analysis. The catalytic evaluation revealed that the best selectivity to benzene (> 84%) and high stability with the low coke deposition (< 1.1%) are related to Ni/Folded Sheets Mesoporous Materials-No. 16. The kinetics of benzene hydrogenation has been examined as a function of benzene and hydrogen pressures at various temperatures. Two kinetic models based on power law and Langmuir-Hinshelwood mechanisms were developed for the reaction and compared with the obtained experimental data. The apparent kinetic parameters were estimated using the multiple regression analysis. Both these models present the good results.


[1] X. Zhang, B. Gao, A. E. Creamer, C. Cao, Y. Li, J. Hazard. Mat. 338 (2017) 102-123.
[2] T. Li, D. Xia, G. Zhou, H. Xie, Z. Jiao, X. Zhang, Catal. Commun. 112 (2018) 35–38.
[3] K. Goundani, C. Papadopoulou, C. Kordulis, React. Kinet. Catal. Lett. 82 (2004) 149-155.
[4] F. Dominguez, J. Sanchez, G. Arteaga, E. Choren, J. Mol. Catal. A: Chem. 228 (2005) 319-324.
[5] X. Liu, S. Liu, P. Xu, Russ. J. Phys. Chem. A 91 (2017) 2098-2102.
[6] M.H. Peyrovi, N. Parsafard, Z. Mohammadian, Chin. J. Chem. Eng. 26 (2018) 521-528.
[7] L. Lozano, G.B. Marin, J.W. Thybaut, Ind. Eng. Chem. Res. 56 (2017) 12953-12962.
[8] T. Bera, J.W. Thybaut, G.B. Marin, Ind. Eng. Chem. Res. 50 (2011) 12933-12945.
[9] T. Bera, J.W. Thybaut, G.B. Marin, ACS Catal. 2 (2012) 1305-1318.
[10] B. Mattson, W. Foster, J. Greimann, T. Hoette, N. Le, A. Mirich, S. Wankum, A. Cabri, C. Reichenbacher, E. Schwanke, J. Chem. Educ. 90 (2013) 613-619.
[11] M.H. Peyrovi, N. Parsafard, M.A. Hajiabadi, Int. J. Chem. Kinet. 49 (2017) 283-292.
[12] M.H. Peyrovi, M.R. Toosi, React. Kinet. Catal. Let. 94 (2008) 115-119.
[13] M.H. Peyrovi, T. Rostamikia, N. Parsafard, Energy Fuels 32 (2018) 11432-11439.
[14] Z. Mohammadian, M.H. Peyrovi, N. Parsafard, ChemistrySelect 3 (2018) 12639-12644.
[15] Z. Mohammadian, M.H. Peyrovi, N. Parsafard, Chem. Phys. Let. 715 (2019) 367-374.
[16] Y. Sun, C. Li, A. Zhang, Appl. Catal. A 22 (2016) 180-187.
[17] V.V. Pushkarev, K. An, S. Alayoglu, S.K. Beaumont, G. A. Somorjai, J. Catal. 92 (2012) 64-72.
[18] S. Akbayrak, J. Colloid Interface Sci. 530 (2018) 459-464.
[19] T. Li, D. Xia, G. Zhou, H. Xie, Z. Jiao, X. Zhang, Catal. Commun. 112 (2018) 35-38.
[20] R.A. Ortega-Domínguez, H. Vargas-Villagrán, C. Peñaloza-Orta, K. Saavedra-Rubio, X. Bokhimi, T.E. Klimova, Fuel 198 (2017) 110-122.
[21] G. Ye, Y. Sun, X. Zhou, K. Zhu, J. Zhou, M.O. Coppens, Chem. Eng. J. 329 (2017) 56-65.
[22] H. Xia, B. Liu, Q. Li, Z. Huang, A.S.C. Cheung, Appl. Catal. B 200 (2017) 552-565.
[23] K.M.S. Khalil, J. Colloid Interface Sci. 315 (2007) 562-568.
[24] L. Čapek, J. Adam, T. Grygar, R. Bulanek, L. Vradman, G. Košová-Kučerová, P. Čičmanec, P. Knotek, Appl. Catal. A 342 (2008) 99-106.
[25] X. Shao, X. Zhang, W. Yu, Y. Wu, Y. Qin, Z. Sun, L. Song, Appl. Surf. Sci. 263 (2012) 1-7.
[26] V. V. Pushkarev, K. An, S. Alayoglu, S. K. Beaumont, G. A. Somorjai, J. Catal. 292 (2012) 64-72.