Evaluation of sodium dodecyl sulfate effects; the response of modified carbon paste electrode with nickel oxide nanoparticles in the presence of methanol

Document Type: Articles

Authors

Department of chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.

Abstract

Synthesis of nickel oxide nanoparticles (NiO NPs) was carried out by Marrubium astranicum leaf extract. The average of particle sizes for NiO NPs was 40 nm. NiO NPs modified carbon paste electrodes in the absence (CPE/NiO NPs) and the presence of sodium dodecyl sulfate (CPE/NiO NPs/SDS) were examined for the electrocatalytic oxidation of methanol in alkaline solutions. The cyclic voltammograms of modified electrodes showed the redox behavior of Ni(III)/Ni(II) couple. However, the presence of SDS at the surface of the electrode increased the efficiency of the catalyst. The values of charge transfer coefficients (α) for the CPE/NiO NPs and CPE/NiO NPs/SDS in the presence of methanol were estimated at about 0.63 and 0.84. Finally, the electrocatalytic oxidation of methanol at the surface of the CPE/NiO NPs/SDS was studied in the optimum conditions (30 min for immersion time in SDS solution, 0.01 M for SDS concentration and 0.4 M for methanol concentration).

Keywords


[1] J. Larminie, A. Dicks, Fuel Cell Systems Explained, Wiley, New York, 2000.
[2] I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M.G. Mahjani, Int. J. Hydrogen Energy 33 (2008) 4367–4376.
[3] B. Habibi, S. Ghaderi, J. Iran. Chem. Soc. 14 (2017) 1633–1642.
[4] R.A. Mirzaie, F. Hamedi, Iran. J. Catal. 5 (2015) 275-283.
[5] M.H. Nobahari, A. Nozad Golikand, M. Bagherzadeh, Iran. J. Catal. 7 (2017) 327-335.
[6] M.S. Tohidi, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy 41 (2016) 8881-8892.
[7] A. Samson Nesaraj, M. Kumar, I. Arul Raj, I. Radhakrishna, R. Pattabiraman, J. Iran. Chem. Soc. 4 (2007) 89-106.
[8] A.S. Nesaraj, I.A. Raj, R. Pattabiraman, J. Iran. Chem. Soc. 7 (2010) 564-584.
[9] B.M. Daas, S. Ghosh, J. Iran. Chem. Soc. 15 (2018) 987–996.
[10] T.D. Jarvis, E.M. Stuve, In: J. Lipkowski, P. Ross, (Ed.), Electrocatalysis, Wiley-VCH, 1998.
[11] Z. Mousavi, A. Benvidi, S. Jahanbani, M. Mazloum‐Ardakani, R. Vafazadeh, H.R. Zare, Electroanalysis 28 (2016) 2985-2992.
[12] K.L. Nagashree, M.F. Ahmed, J. Solid State Electrochem. 14 (2010) 2307–2320.
[13] H. Razmi, E. Habibi, H. Heidari, Electrochim. Acta 53 (2008) 8178-8185.
[14] J.B. Raoof, N. Azizi, R. Ojani, S. Ghodrati, M. Abrishamkar, F. Chekin, Int. J. Hydrogen Energy 36 (2011) 13295-13300.
[15] A.V. Tripkovic, K.D. Popovic, J.D. Lovic, V.M. Jovanovic, A. Kowal, J. Electroanal. Chem. 572 (2004) 119–128.
[16] A.V. Tripkovic, K.D. Popovic, B.N. Grgur, B. Blizanac, P.N. Ross, N.M. Markovic, Electrochim. Acta 47 (2002) 3707-3714.
[17] Y.G. Zhou, J.J. Chen, F. Wang, Z.H. Sheng, X.H. Xia, Chem. Commun. 46 (2010) 5951-5953.
[18] F. Kadirgan, S. Beyhan, T. Atilan, Int. J. Hydrogen Energy 34 (2009) 4312-4320.
[19] Y. Lou, M.M. Maye, L. Han, J. Luo, C.J. Zhong, Chem. Commun. 5 (2001) 473-474.
[20] Y. Feng, L. Bi, Z. Liu, D. Kong, Z. Yu, J. Catal. 290 (2012) 18-25.
[21] T.C. Wen, S.M. Lin, J.M. Tsai, J. Appl. Electrochem. 24 (1994) 233–238.  
[22] C. Fan, D.L. Piron, A. Sleb, P. Paradis, J. Electrochem. Soc. 141 (1994) 382–387.
[23] I.A. Raj, K.I. Vasu, J. Appl. Electrochem. 20 (1990) 32-38.
[24] M.A. Casadei, D. Pletcher, Electrochim. Acta 33 (1988) 117–120.
[25] A.F.B. Barbosa, V.L. Oliveira, J. Drunen, G. Tremiliosi-Filho, J. Electroanal. Chem. 746 (2015) 31-38.
[26] T.R. Ling, K.T. Lien, J.J. Jow, T.Y. Lin, Electroanalysis 21 (2009) 2213-2219.
[27] Y.Y. Liao, T.C. Chou, Electroanalysis 12 (2000) 55-59.
[28] M.A. Abdel Rahim, R.M. Abdel Hameed, M.W. Khalil, J. Power Sources 134 (2004) 160–169.
[29] A.H. Touny, M.M. Saleh, Int. J. Electrochem. Sci. 13 (2018) 1042–1050.
[30] M. Asgari, M. Ghannadi Maragheh, R. Davarkhah, E. Lohrasbi, J. Electrochem. Soc. 158 (2011) K225-K229.
[31] M.G. Hosseini, M.M. Momeni, M. Faraji, Electroanalysis 22 (2010) 2620-2625.
[32] Y. Ma, L. Sheng, H. Zhao, K. Am, L. Yu, J. Xu, X. Zhao, Solid State Sci. 44 (2015) 49-55.
[33] M. Kundu, L. Liu, Mater. Lett. 144 (2015) 114-118.
[34] X. Qi, G. Su, G. Bo, L. Cao, W. Liu, Surf. Coat. Technol. 272 (2015) 79-85.
[35] M. Chiku, M. Toda, E. Higuchi, H. Inoue, J. Power Sources 286 (2015) 193-196.
[36] J. Zhao, Y. Tan, K. Su, J. Zhao, C. Yang, L. Sang, H. Lu, J.H. Chen, Appl. Surf. Sci. 337 (2015) 111-117.
[37] A.L. Gajengi, T. Sasaki, B.M. Bhanage, Catal. Commun. 72 (2015) 174-179.
[38] M. Tadic, D. Nikolic, Matjaz, G.R. Blake, J. Alloys Compd. 647 (2015) 1061-1068.
[39] R.A. Soomro, Z.H. Ibupoto, Sirajuddin, M. I. Abro, Sens. Actuators B 209 (2015) 966-974.
[40] A. Ahmadia, A. Nezamzadeh-Ejhieh, J. Electroanal. Chem. 801 (2017) 328–337.
[41] C.D. Gu, M.L. Huang, X. Ge, H. Zheng, X.L. Wang, J.P. Tu, Int. J. Hydrogen Energy 39 (2014) 10892-10901.
[42] N.A.M. Barakat, M.A. Abdelkareem, M.E. Newehy, H.Y. Kim, Nanoscale Res. Lett. 8 (2013) 402-407.
[43] N. Spinner, W.E. Mustain, Electrochim. Acta 56 (2011) 5656-5666.
[44] P. Wang, Y. Zhou, M. Hu, J. Chen, Appl. Surf. Sci. 392 (2017) 562-571.
[45] T.M. Mudrini, Z.D. Mojovi, A.Z. Ivanovi Šaši, N.S. Vukeli, Z.D. Upi, D.M. Jovanovi, Russ. J. Phys. Chem. A 87 (2013) 2127-2133.
[46] N.R. Stradiotto, K.E. Toghill, L. Xiao, A. Moshar, R.G. Compton, Electroanalysis 21 (2009) 2627-2633.
[47] R. Parsons, T. Vander Noot, J. Electroanal. Chem. 257 (1988) 9–45.
[48] K. Nishimura, K. Machida, M. Enyo, J. Electroanal. Chem. 251 (1988) 117–125.
[49] P.C. Biswas, Y. Nodasaka, M. Enyo, J. Appl. Electrochem. 26 (1996) 30–35.
[50] M. Jafarian, R.B. Moghaddam, M.G. Mahjani, F. Gobal, J. Appl. Electrochem. 36 (2006) 913–918.
[51] P.G. Westmoreland, R.A. Day, A. Underwood, Anal. Chem. 44 (1972) 737-740.
[52] R. Vittal, H. Gomathi, K.J. Kim, Adv. Colloid Interface Sci. 119 (2006) 55–68.
[53] M.J. Rosen. Surfactants and interfacial phenomena, New York, Wiley Interscience, 1978.
[54] P.A. Quintela, A.E. Kaifer, Langmuir 3 (1987) 769-773.
[55] B. Norouzi, M. Norouzi, J. Solid State Electrochem. 16 (2012) 3003–3010.
[56] B. Norouzi, M. Fatemi, J. Iran. Electrochem. Soc. 1 (2015) 9-15.
[57] O.K. Popoola, A.M. Elbagory, F. Ameer, A.A. Hussein, Molecules 18 (2013) 9049-9060.
[58] S. Iqbal, U. Younas, K.W. Chan, M. Zia-UI-Haq, M. Ismail, Molecules 17 (2012) 6020-6032.
[59] M. Mohadjerani, K. Pakzad, J. Appl. Chem. 7 (2013) 45-48.
[60] E. Ott, R.W. Cairns, Golden book of phase transitions, Wroclaw, 1 (2002) 1-123.
[61] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143-150.
[62] A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, C.R. Chim. 17 (2014) 49–61.
[63] M. Salavati-Niasari, F. Davar, M. Mazaheri, M. Shaterian, J. Magn. Magn. Mater. 320 (2008) 575-578.
[64] R. Ojani, J.B. Raoof, S.R. Hosseini, Electrochim. Acta 53 (2008) 2402-2407.
[65] A.J. Bard, L.R. Faulkner, Electrochemical methods, fundamentals and applications, Wiley, New York, USA, 2001.
[66] M.H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Electrochim. Acta 147 (2014) 572–581
[67] T.F. Connors, J.F. Rusling, A. Owlia, Anal. Chem. 57 (1985) 170–174.
[68] P.G. Westmoreland, R.A. Day, A. Underwood, Anal. Chem. 44 (1972) 737-740.
[69] C. Hu, S. Hu, Electrochim. Acta 49 (2004) 405-412.
[70] A. Nozad Golikand, M. Asgari, M. Ghannadi Maragheh, S. Shahrokhian, J. Electroanal. Chem. 588 (2006) 155-160.
[71] J. Yang, J. Tan, F. Yang, X. Li, X. Liu, D. Ma, Electrochem. Commun. 23 (2012) 13-16.
[72] G. Karim-nezhad, S. Pashazadeh, A. Pashazadeh, Chin. J. Catal. 33 (2012) 1809-1816.
[73] A. Ciszewski, G. Milczarek, B. Lewandowska, K. Krutowski, Electroanalysis 15 (2003) 518-523.
[74] R. Ojani, J.B. Raoof, S. Fathi, Electrochim. Acta 54 (2009) 2190-2196.
[75] A.V. Tripkovi, K.D. Popovi, J.D. Lovi, V.M. Jovanovi, A. Kowal, J. Electroanal. Chem. 572 (2004) 119-128.