Investigation efficiency of nano photocatalytic compound of TiO2 and rice husk silica in removal of reactive red 198 dye from synthetic aqueous solutions

Document Type: Articles

Authors

1 Department of Environmental Health Engineering, Semnan University of Medical Sciences, Semnan, Iran.

2 Department of Environmental Health Engineering, Babol University of Medical Sciences, Babol, Iran.

Abstract

This study was performed with the aim of investigating the efficiency of the Nano photocatalytic of ultraviolet and titanium dioxide compound and rice husk silica adsorbent (UV/TiO2/RHS) in removal reactive red 198 dye from synthetic aqueous solutions. The removal of reactive red 198 dye was done in batch reactors with a volume of 250 ml using RHS deposited by titanium dioxide in the presence of a UV lamp. The effect of pH, immobilization of TiO2 on RHS adsorbent, contact time, nanoparticle mass and initial concentration of dye in removal efficiency were investigated. The results of this research showed that with an increase in pH and alkalinity of the solution, the removal efficiency declined. As the pH changed from 3 to 9, the removal efficiency in UV/TiO2/RHS, RHS adsorbent and UVC radiation declined from 75.25 to 27.87, 8.37 to 3.4, and 16.62 to 3.25%, respectively. The maximum dye removal efficiency obtained by UV/TiO2/RHS was as large as 87.5% under pH=3, contact time of 60 min, nanoparticle mass of 1 g/L, and 25 mg/L concentration of the reactive red 198 dye. Therefore, the rice husk silica as a natural adsorbent in combination with (TiO2/UV) can be used as an effective method for removal reactive red of aqueous solutions on a larger scale by optimizing the parameters affecting the removal efficiency.

Keywords


[1] L. Shabani, H. Aliyan, Iran. J. Catal. 6 (2016) 221-228.
[2] P. Aravind, H. Selvaraj, S. Ferro, M. Sundaram, J. Hazard. Mater. 318 (2016) 203–215.
[3] A. Buthiyappan, A.R. Abdul Aziz, W.M. Ashri, W. Daud, Rev. Chem. Eng. 32 (2016) 1-47.
[4] S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal. 8 (2018) 143-150.
[5] A. Bamoniri, B.F. Mirjalilib, N.Y. Mahabadi, Iran. J. Catal. 8 (2018) 81-88.
[6] M. Ahmadi, K. Rahmani, A. Rahmani, H. Rahmani, Pol. J. Chem. Technol. 19 (2017) 104-112.
[7] N.E. Fard, R. Fazaeli, Iran. J. Catal. 8 (2018) 133-141.
[8] M. Farzadkia, K. Rahmani, M. Gholami, A. Esrafili, A. Rahmani, H. Rahmani, Korean J Chem. Eng. 31 (2014) 2014-2019.
[9] M. Fazlzadeh, A. Rahmani, H. Nassehinia, H. Rahmani, K. Rahmani, Koomesh 3(2016) 350-356.
[10] M. Gholami, K. Rahmani, A. Rahmani, H. Rahmani, A. Esrafili, Desalin. Water Treat. 57 (2016) 13878-13886.
[11] P. Mahajan, J. Kaushal, ‎Coord. Chem. Rev. 1 (2014) 67-76.
[12] S. Dianat, Iran. J. Catal. 8 (2018) 121-132.
[13] A. Yazdanbakhsh, A. Rahmani, M. Massoudinejad, M. Jafari, M. Dashtdar, Desalin. Water Treat. 57 (2016) 23719-23727.
[14] A. Maleki, Y. Zandsalimi, M. Jafari, H. Daraei, S. Sadeghi, J. Health. 6 (2016) 498-506.
[15] S. Alijani, M. Vaez, A. Zaringhalam Moghadam, Int. J. Hydrogen Energy 6 (2013)243-256.
[16] H. Nassehinia, A. Rahmani, G. Ghaieny, S.M. Mehdinia, Koomesh 18 (2016) 309-316.
[17] J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 316 (2016) 194–203.
[18] M. Karimi-Shamsabadi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chem. 418–419 (2016) 103–114.
[19] L. Pereira, R. Pereira, C.S. Oliveira, L. Apostol, M.Gavrilescu, M.N. Pons, O. Zahraa, J. Photochem. Photobiol. 89 (2013) 33-39.
[20] O.K. Mahadwad, P.A. Parikh, R.V. Jasra, C. Patil, Environ. Technol. 33 (2012) 307-312.
[21] K.G. Vibulyaseak, S.B. Deepracha, M. Ogawa, J. Solid State Chem. 270 (2019) 162-172.
[22] X. Xiu-qin, J. Rong-li, S. Hong-kai, Q. Ke-di, W. Peng, W. Jing, J. Adv. Oxid. Technol. 19 (2016) 381-386.
[23] M. Rismanchian, S. Barakat, N. Khoshzat, R. Keshavarzi, M. Shakerian, Int. J. Env. Health Eng. 4 (2015) 1-7.
[24] H. Nassehinia, A. Mahmoodi, S.M. Mehdinia, Koomesh 18 (2016) 334-342.
[25] S.M. Mehdinia, P. Abdul Latif, A. Makmom Abdullah, H. Taghipour, Asian J. Sci. Res. 4 (2011) 246-254.
[26] S.M. Mehdinia, K. Moeinian, Rastgoo, Iranica J. Energy Environ. 5 (2014) 218-223.
[27] M.A. Zazouli, D. Balarak, Y. Mahdavi, M. Ebrahimi, Iran. J. Health Sci. 1 (2010) 36-43.
[28] M. Gholami, H. Nassehinia, A. Jonidi-Jafari, S. Nasseri, A. Esrafili, J. Environ. Health. Sci. Eng. 12 (2014) Article 45.
[29] S.N. Hosseini, S.M. Borghei, M. Vossoughi, N. Taghavinia, Appl. Catal. B. 74 (2007) 53-62.
[30] J. Matos, M. Hofman, R. Pietrzak, Carbon 54 (2013) 460-471.
[31] C.R. Marcelo, G.A. Puiatti, M.A. Nascimento, A.F. Oliveria, R.P. Lopes, J. Nanomater. (2018) Article ID 4642038.
[32] A. Nezamzadeh-Ejhieh, S. Tavakoli-Ghinani, C.R. Chim. 17 (2014) 49-61.
[33] M. Dehghani, M. Ghadami, T. Gholami, M.A. Shiri, Z. Elhameyan, M.R. Javaheri, N. Shamsedini, S. Shahsavani, J. Health Sci. Surveillance Syst. 3 (2013) 139-145.
[34] M.R. Samarghandi, M. Siboni, A. Maleki, S.J. Jafari, F. Nazemi, J. Mazandaran Univ. Med. Sci. 21 (2011) 44-52.
[35] E. Bazrafshan, F. Kord Mostafapour, B. Barikbin, J. Birjand Univ. Med. Sci. 19 (2012) 266-276.
[36] M. EL. Alouani, S. Alehyen, M. EL. Achouri, M. Taibi. J. Mater. Environ. Sci. 9 (2018)32-46.
[37] H. Ayoub, M. Kassir, M. Raad, H. Bazzi, A. Hijazi. J. Mater. Civ. Eng. 5 (2017)31-45.
[38] A. Nezamzadeh-Ejhieh, M. Khorsandi, J. Hazard. Mater. 176 (2010) 629–637.
[39] H. Nassehinia, M. Gholami, A. Jonidi Jafari, A. Esrafili, Asian J. Chem. 25 (2013) 3427-3430.
[40] R.M. Mohamed, D.L. McKinney, W.M. Sigmund, Mater. Sci. Eng. 73 (2012) 1-13.
[41] A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, J. Ind. Eng. Chem. 21 (2015) 668–676.