Thermal regeneration and decoking optimization of chlorinated platinum/alumina catalysts for the isomerization process

Document Type: Articles

Author

Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.

Abstract

The samples of spent chlorinated Pt/Al2O3 catalysts that were used in the isomerization process were decoked at elevated temperatures under airflow and different oxygen concentrations. The surface of the catalyst was characterized by thermal gravimetric analysis, differential scanning calorimetry, Brunauer-Emmett-Teller analysis, attenuated total reflection fast Fourier infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray elemental mapping. The effective parameters for the catalyst decoking optimized were coke burning temperature (450-600 ), temperature ramp (5-25 /min) and oxygen content of the feed gas (0.5-2.0% vol.) in a tubular fixed-bed reactor using the response surface experimental design method. The spectroscopic tests were set based on the absorbance at 1390 cm-1, representing the surface coverage of platinum-alumina, and the results revealed that the greatest safe regeneration of chlorinated Pt/Al2O3 catalyst is achieved under a specific concentration of oxygen, temperature domain and thermal ramp. Moreover, the mechanism and the reaction rates of the decoking step of the catalyst regeneration were examined and the kinetic parameters of chlorinated Pt/Al2O3 decoking were determined.

Keywords


[1] J. Hidalgo, M. Zbuzek, R. Černý, P. Jíša, Open Chem. 12 (2014) 1–13.
[2] F. Garin, S. Aeiyach, P. Legare, G. Maire, J. Catal. 77 (1982) 323–337.
[3] M. P. Lapinski, S. Metro, P. R. Pujadó, M. Moser, Catalytic Reforming in Petroleum Processing, in Handbook of Petroleum Processing, Springer International Publishing, 2015, 229–260.
[4] A. Manasilp, E. Gulari, Appl. Catal. B 37 (2002) 17–25.
[5] F. Jiang, L. Zeng, S. Li, G. Liu, S. Wang, J. Gong, ACS Catal. 5 (2015) 438–447.
[6] R. W. Maatman, P. Mahaffy, P. Hoekstra, C. Addink, J. Catal. 23 (1971) 105–118.
[7] C. Corolleur, J. Catal. 24 (1972) 385-400.
[8] F. Aberuagba, React. Kinet. Catal. Lett. 70 (2000) 243–249.
[9] J. Beltramini, D. L. Trimm, Appl. Catal. 31 (1987) 113-118.
[10] M. Bhasin, J. McCain, B. Vora, T. Imai, P. Pujadó, Appl. Catal. A 221 (2001) 397–419.
[11] D. Mei, J. H. Kwak, J. Hu, S. J. Cho, J. Szanyi, L. F. Allard, C. H. F. Peden, J. Phys. Chem. Lett. 1 (2010) 2688–2691.
[12] J. Moulijn, A. van Diepen, F. Kapteijn, Appl. Catal. A 212 (2001) 3–16.
[13] Z. Sarbak, in: E. G. Derouane, V. Parmon, F. Lemos, F. Ramôa Ribeiro, (Eds.), Coke formation on alumina and alumina supported platinum catalysts, in sustainable strategies for the upgrading of natural Gas: fundamentals, challenges, and opportunities, Springer-Verlag, Berlin, 2005, pp. 359–364.
[14] Y. M. Zhorov, L. A. Ostrer, Chem. Technol. Fuels Oils. 26 (1990) 226–229.
[15] A. G. Gayubo, F. J. Lorens, E. A. Cepeda, J. Bilbao, Ind. Eng. Chem. Res. 36 (1997) 5189–5195.
[16] M. Argyle, C. Bartholomew, Catalysts 5 (2015) 145–269.
[17] F. Le Normand, A. Borgna, T. F. Garetto, C. R. Apesteguia, B. Moraweck, J. Phys. Chem. 100 (1996) 9068–9076.
[18] B. B. Zharkov, V. L. Medzhinskii, L. F. Butochnikova, O. M. Oranskaya, V. B. Maryshev, Chem. Technol. Fuels Oils. 24 (1988) 157–159.
[19] T. F. Garetto, C. R. Apesteguia, Appl. Catal. 20 (1986) 133–143.
[20] M. S. Zanuttini, M. A. Peralta, C. A. Querini, Ind. Eng. Ch em. Res. 54 (2015) 4929–4939.
[21] J. Barbier, Appl. Catal. 23 (1986) 225–243.
[22] A. Y. León, N. A. Rodríguez, E. Mejía, R. Cabanzo, J. Phys. Conf. Ser. 687 (2016) 012092.
[23] T. Sato, K. Kunimatsu, M. Watanabe, H. Uchida, J. Nanosci. Nanotechnol. 11 (2011) 5123–5130.
[24] K. Koichumanova, K. B. Sai Sankar Gupta, L. Lefferts, B. L. Mojet, K. Seshan, Phys. Chem. Chem. Phys. 17 (2015) 23795–23804.
[25] I. Ortiz-Hernandez, D. Jason Owens, M. R. Strunk, C. T. Williams, Langmuir 22 (2006) 2629–2639.
[26] H. Gao, Appl. Surf. Sci. 379 (2016) 347–357.
[27] G. J. Arteaga, J. A. Anderson, C. H. Rochester, Catal. Lett. 8 (1999) 189–194.
[28] P. Bazin, O. Saur, J. C. Lavalley, M. Daturi, G. Blanchard, Phys. Chem. Chem. Phys. 7 (2005) 187-194.
[29] M. Mihaylov, K. Chakarova, K. Hadjiivanov, O. Marie, M. Daturi, Langmuir 21 (2005) 11821–11828.
[30] K. Chakarova, M. Mihaylov, K. Hadjiivanov, Microporous Mesoporous Mater. 81 (2005) 305–312.
[31] T. Chafik, O. Dulaurent, J. L. Gass, D. Bianchi, J. Catal. 179 (1998) 503–514.
[32] S. David Jackson, N. Hussain, A. Shona Munro, J. Chem. Soc. Faraday Trans. 94 (1998) 955–961.
[33] F. J. Rivera-Latas, R. A. D. Betta, M. Boudart, AIChE J. 38 (1992) 771–780.
[34] N. S. Nesterenko, A. V. Avdey, A. Y. Ermilov, Int. J. Quantum Chem. 106 (2006) 2281–2289.
[35] H. Seo, J. K. Lee, U. G. Hong, G. Park, Y. Yoo, J. Lee, H. Chang, I. K. Song, Catal. Commun. 47 (2014) 22–27.
[36] H. M. Gobara, R. S. Mohamed, F. H. Khalil, M. S. El-Shall, S. A. Hassan, Egypt. J. Pet. 23 (2014) 105–118.
[37] G. Wang, J. Zhang, J. Shao, H. Ssun, H. Zuo, J. Iron Steel Res. Int. 21 (2014) 897–904.
[38] S. Lowell, J. E. Shields, Powder Surface Area and Porosity, Springer, Netherlands, 1991.
[39] M. Naderi, "Surface Area: Brunauer–Emmett–Teller (BET)." Progress in filtration and separation. Academic Press, 2015, pp. 585-608.
[40] X. Liu, Y. Guo, W. Xu, Y. Wang, X. Gong, Y. Guo, G. Lu, Kinet. Catal. 52 (2011) 817–822.
[41] J. O. Alben, F. G. Fiamingo, Fourier Transform Infrared Spectroscopy, Academic, New York, 1984, pp. 133–179.
[42] D. C. Harris, M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover, 1978.
[43] R. Mehrotra, Infrared Spectroscopy, Gas Chromatography/Infrared in Food Analysis, in Encyclopedia of Analytical Chemistry, Chichester, UK, John Wiley & Sons, 2000.
[44] Z. Wu, Y. Zhao, J. Zhang, Y. Wang, Molecules 22 (2017) Article ID 1238.
[45] M. Morita, A. Yasuhara, Electron microscope and elemental mapping image generation method, US Pat. (2017) 9627175B2.
[46] D. L. Pavia, G. M. Lampman, G. S. Kriz, J. A. Vyvyan, Introduction to Spectroscopy, Cengage Learning, 2008.
[47] B. E. Obinaju, F. L. Martin, Environ. Int. 89–90 (2016) 93–101.
[48] J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in Encyclopedia of Analytical Chemistry, Chichester, John Wiley & Sons, 2006.
[49] S. Alexander, V. Gomez, A. R. Barron, J. Nanomater. 2 (2016) 1–8.
[50] S. D. Ebbesen, B. L. Mojet, L. Lefferts, Langmuir 24 (2008) 869–879.
[51] D. Ferri, T. Bürgi, A. Baiker, J. Phys. Chem. B 105 (2001) 3187–3195.
[52] F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Fuel 139 (2015) 40–50.
[53] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Incorporated, 2017.
[54] D. L. Trimm, Introduction to Catalyst Deactivation, in J. L. Figueiredo (ed.), Progress in Catalyst Deactivation, Martinus Nijhoff Publishers, The Hague, 1982, pp. 3–22.