The performance of NiMo/SiO2-Al2O3 and NiMo/SO4-Al2O3 catalysts for hydrocracking of n-hexadecane

Document Type: Articles

Authors

1 School of Chemistry, College of Science, University of Tehran, Tehran, Iran.

2 Research Institute of Petroleum Industry (RIPI), Tehran, Iran.

Abstract

In this study, the performance of NiMo catalysts over an amorphous SiO2-Al2O3 and SO4-Al2O3 with various contents of H2SO4 was investigated for the n-hexadecane hydrocracking (n-C16) using a down flow fixed bed micro-reactor. The synthesized catalysts were characterized using BET, XRD, and NH3-TPD analysis. The analysis of the coke formed on the catalysts has been carried out using the TG-TPO. The obtained results indicated that the coke formation was decreased by increasing sulfuric acid content in catalysts. The performance of the catalysts was investigated for n-C16 hydrocracking and the liquid products were analyzed using GC-MS. The catalytic activity increased when sulfuric acid content increased and reached to about 99% conversion using catalyst containing 0.21 wt.% H2SO4.

Keywords


[1] C. Leyva, J. Ancheyta, A. Travert, F. Maugé, L. Mariey, J. Ramírez, M.S. Rana, Appl. Catal. A 425–426 (2012) 1-12.
[2] W. Li, J. Zhu, J. Qi, J. Fuel Chem. Technol. 35 (2007) 176–180.
[3] J. Ancheyta, M. S. Rana, Future technology in heavy oil processing, Conference Proceedings.
[4] E. M. Juárez, F. J. O. García, P. S. Hernández, Fuel 135 (2014) 51–54.
[5] J. G. Speight, Catal. Today 98 (2004) 55–60.
[6] P.P. Dik, O.V. Klimov, G.I. Koryakina, K.A. Leonova, V.Y. Pereyma, S.V. Budukva, E.Y. Gerasimov, A.S. Noskov, Catal. Today 220–222 (2014) 124–132.
[7] J. Mosio-Mosiewski, I. Morawski, Appl. Catal. A 283 (2005) 147–155.
[8] J.M. Schweitzer, S. Kressmann, Chem. Eng. Sci. 59 (2004) 5637–5645.
[9] H. Fan, Z. Li, T. Liang, J. Fuel Chem. Technol. 35 (2007) 32–35.
[10] C. Dujardin, M.A. Lélias, J. van Gestel, A. Travert, J.C. Duchet, F. Maugé, Appl. Catal. 322 (2007) 46–57.
[11] J.-S. Choi, F. Maugé, C. Pichon, J. Olivier-Fourcade, Appl. Catal. A 267 (2004) 203–216.
[12] S. G. A. Ferraz, B. M. Santos, F. M. Z. Zotin, L. R. R. Araujo, J. L. Zotin, Ind. Eng. Chem. Res. 54 (2015) 2646-2656.
[13] S. G. A. Ferraz, F. M. Z. Zotin, L. R. R. Araujo, J. L. Zotin, Appl. Catal. A 384 (2010) 51–57.
[14] J. Marques, D. Guillaume, I. Merdrignac, D. Espinat, S. Brunet, Appl. Catal. B 101 (2011) 727–737.
[15] P. Y. Looi, A. R. Mohamed, C. T. Tye, Chem. Eng. J. 181–182 (2012) 717–724.
[16] Y. Kim, C. Kim, P. Kim, J. Yi, J. Non-Cryst. Solids 351 (2005) 550–556.
[17] M. May, J. Navarrete, M. Asomoza, R. Gomez, J. Porous Mater. 14 (2007) 159–164.
[18] Q. Yuan, A.-X. Yin, C. Luo, L.-D. Sun, Y.-W. Zhang, W.-T. Duan, H.-C. Liu, C.-H. Yan J. Am. Chem. Soc. 130 (2008) 3465–3472.
[19] M. A. Ali, T. Tatsumi, T. Masuda, Appl. Catal. A 233 (2002) 77–90.
[20] R. G. Tailleur, Stud. Surf. Sci. Catal. 143 (2000) 321-329.
[21] V. B. Phapale, M. Guisán-Ceinos, E. Buñuel, D. J. Cárdenas, Chem. Eur. J. 15 (2009) 12681–12688.
[22] N. Panariti, A. Del Bianco, G. Del Piero, M. Marchionna, Appl. Catal. A 204 (2000) 203–213.
[23] T. Olorunyolemi, R.A. Kydd, Catal. Lett. 63 (1999) 173–178.
[24] V. Calemma, S. Peratello, C. Perego, Appl. Catal. A 190 (2000) 207–218.