Oxidative desulfurization of light fuel oil by using hydrogen peroxide in the presence of acetic acid catalyst

Document Type: Articles

Authors

Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran.

Abstract

Hydrogen peroxide as an oxidant agent was used for desulfurization of a petroleum hydrocarbon fraction (C10-C22) with boiling range of 175-375 ℃, (light fuel oil) in the presence of acetic acid as catalyst. The oxidation was performed in an ultrasonic bath. It is found that increasing the amount of hydrogen peroxide lead to increase the oxidation rate and so desulfurization efficiency, while the amount of acetic acid has low effect on the desulfurization performance. Residence time and temperature of ultrasonic bath affect significantly on oxidation process. Sulfuric component produced by oxidation process were extracted using methanol as solvent. The number of washing has a considerable effect on the extraction of sulfuric component. So that, the increasing of the number of washing from 1 to 4 times, sulfur content of the hydrocarbon decreased from about 0.554 to 0.154 wt. %. The stability of hydrocarbon during desulfurization was also studied by comparing gas chromatograms of it before and after desulfurization. It was found that the composition of hydrocarbon fraction has no considerable change due to sulfur removal.

Keywords


[1] R. Javadli, A. De Klerk, Appl. Petrochem. Res. 1 (2012) 3-19.
[2] P. Leprince, Petroleum Refining. Vol. 3 Conversion Processes, Editions Technip. 2001.
[3] S. G. McKinley, R.J. Angelici, Energ. Fuel. 17 (2003) 1480-1486.
[4] X. Ma, J.H. Kim, C. Song,   Fuel Chem. Division Prep. 48 (2003) 135-137.
[5] C. Canales, J. Eyzaguirre, P. Baeza, P. Aballay, J. Ojeda,  Ecol. Chem. Eng.  S. 25 (2018) 549-556.
[6] Mao, C., Zhao, R., Li, X., X. Gao, RSC Adv. 7 (2017) 12805-12811.
[7] S. Gao, X. Chen, X. Xi, M. Abro, W. Afzal, R. Abro, G. Yu, ACS Sustain. Chem. Eng. 7 (2019) 5660-5668.
[8] T.A. Saleh, K.O. Sulaiman, S.A. AL-Hammadi, H. Dafalla, G.I. Danmaliki, J. Clean. Prod. 154 (2017) 401-412.
[9] S. K. Thaligari, V.C. Srivastava, B. Prasad, Int. J. Chem. React. Eng. 15 (2016).
[10] J. Yu, Z. Zhu, Q. Ding, Y. Zhang, X. Wu, L. Sun, J. Du,  Catal. Today 339 (2020) 105-112.
[11] H. Bian, H. Zhang, D. Li, Z. Duan, H. Zhang, S. Zhang, B. Xu, Microporous Mesoporous Mater. 294 (2020) 109837.
[12] A. Moslemi, A.N. Chermahini, J.N. Sarpiri, S.  Rezaei, M. Barati, J Taiwan Inst Chem Eng. 97 (2019) 237-246.
[13] B. Torres, L. Alvarez-Contreras, D. Bahena-Uribe, R.R. Chianelli, M. Ramos, Advanced Catalytic Materials, Current Status and Future Progress, Springer, 2019, pp. 209-216
[14] F. Boshagh, B. Mokhtarani, H.R. Mortaheb, J. Hazard. Mater. 280 (2014) 781-787.
[15] Y. Shiraishi, T. Hirai, I. Komasawa, Ind. Eng. Chem. Res. 37 (1998) 203-211.
[16] P.S. Tripathi, K.K.  Mishra, R.R.   Roy, D.N. Tewary, Appl Radiat Isot. 56 (2002) 975-984.
[17] B.M. Vogelaar, M. Makkee, J.A. Moulijn, Fuel Process. Technol. 61 (1999) 265-277.
[18] K.X. Lee, J.A. Valla, Reaction Chem.  Eng. 4 (2019) 1357-1386.
[19] T.A. Saleh, J. Clean. Prod. 172 (2018) 2123-2132.
[20] K.X. Lee, J.A. Valla, Appl. Catal.  201 (2017) 359-369.
[21] Srivastava, V.C. RSC Adv. 2 (2012) 759-783.
[22] P.T. Vasudevan, J.G. Fierro, Catal Rev Sci Eng. 38 (1996), 161-188.
[23] H. Mei, B.W. Mei, T.F. Yen, Fuel 82 (2003) 405-414.
[24] E. W.Qian, J. Japan Pet. Inst. 51 (2008) 14-31.
[25] J. P. Nehlsen, Developing clean fuels: Novel techniques for desulfurization. Princeton, New Jersey, 2006.
[26] M.F. Ali, A. Al-Malki, B. El-Ali, G. Martinie, M.N. Siddiqui, Fuel 85 (2006) 1354-1363.
[27] J.L. García-Gutiérrez, G.A. Fuentes, M.E. Hernández-Terán, P. Garcia,  F. Murrieta-Guevara, F. Jiménez-Cruz, Appl. Catal. A 334 (2008) 366-373.
[28] R. Javadli, A. De Klerk, Appl. Petrochem. Res. 1 (2012) 3-19.
[29] J. M. Fraile, C. Gil, J. A. Mayoral, B. Muel, L. Roldán, E. Vispe, F. Puente, Appl. Catal. 180 (2016) 680-686.
[30] A. Bourane, O. Koseoglu, A. Al-Hajji, F. Adam, H. Muller, React. Kinet. Mech. Catal. 126 (2019) 365-382.
[31] M.D.G. de Luna, M.W. Wan, L.R. Golosinda, C.M. Futalan, M.C. Lu,  Energy Fuels 31 (2017) 9923-9929.
[32] Y. Muhammad, A. Shoukat, A.U. Rahman, H.U. Rashid, W. Ahmad, Chin. J. Chem. Eng. 26 (2018) 593-600.
[33] J. Xiao, L. Wu, Y. Wu, B. Liu, L. Dai, Z. Li, H. Xi, Appl. Energy 113 (2014) 78-85.
[34] J. Wang, D. Zhao, K. Li, Energy Fuels 24 (2010) 2527-2529.
[35] Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, O.R. Koseoglu, Catal. Rev. Sci. Eng. 53 (2011) 199-255.
[36] D. Margeta, K. Sertić-Bionda, L. Foglar, Appl Acoust. 103 (2016) 202-206.
[37] Zhang Q., M. Zhu, I. Jones, Z. Zhang, D. Zhang. Chemeca 2019: Chemical Engineering Megatrends and Elements, Sydney, Australia, 2019: 509-519.
[38] L. Hao, L. Sun, T. Su, D. Hao, W. Liao, C. Deng, H. Lü, Chem. Eng. J. 358 (2019) 419-426.
[39] S. Xun, W. Jiang, T. Guo, M. He, R. Ma, M. Zhang, H. Li, J. Colloid Interface Sci. 534 (2019) 239-247.
[40] P. S. Sinhmar, P.R. Gogate, Ultrason Sonochem. 63 (2020) 104925.
[41] R.C. Weast, M.J. Astle, W.H. Beyer, CRC handbook of chemistry and physics (Vol. 69). Boca Raton, FL: CRC Press, 1988.
[42] I. Babich, J, A. Moulijn, Fuel  82 (2003) 607–631
[43] I. Funakoshi, T. Aida, (1998) U.S. Patent No. 5,753,102. Washington, DC: U.S. Patent and Trademark Office.
[44] P. Forte, U.S. Patent No. 5,582,714. Washington, DC: U.S. Patent and Trademark Office, 1996.
[45] A. Haghighat Mamaghani, S. Fatemi, M. Asgari, Int. J. Chem. Eng. 2013 (2013) 1-10.
[46] M.R. Jalali, M.A.  Sobati, Appl. Therm. Eng. 111 (2017) 1158-1170.
[47] H. Aydın, C. İlkılıç, Fuel 102 (2012) 605-612.
[48] F.A. Duarte,  P.D.A. Mello, C.A. Bizzi, M.A. Nunes, E.M. Moreira, M.S. Alencar, E.M. Flores,  Fuel 90 (2011) 2158-2164.
[49] A. M. Dehkordi, Z. Kiaei, M.A. Sobati, Fuel Process. Technol. 90 (2009) 435-445.
[50] P.D.A. Mello, F.A. Duarte, M.A.  Nunes, M.S. Alencar, E.M. Moreira, M.  Korn, E.M.  Flores, Ultrason Sonochem. 16 (2009) 732-736.
[51] F. Zannikos, E. Lois, S. Stournas, Fuel Process. Technol. 42 (1995) 35-45.
[52] A. Bösmann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz, P. Wasserscheid, Chem. Comm. 23 (2001) 2494-2495.
[53] M. A. Sobati, A. M. Dehkordi, M. Shahrokhi. Fuel Process. Technol. 91 (2010) 1386-1394.
[54] M. Iqbal, A. Ghaffar, A. Nazir, M. Yameen, B. Munir, N. Nisar, T.H. Bokhari, Energ Source Part A 39 (2017) 1109-1115.