Fe3O4@nano-dextrin/Ti(IV) as a bio-based magnetic nano-catalyst for facile synthesis of 2,3-dihydroquinazolin-4(1H)-ones

Document Type: Articles

Authors

Department of Chemistry, College of Science, Yazd University, Yazd, 89195-741, I. R. Iran.

Abstract

A bio-based magnetic nano-catalyst (Fe3O4@nano-dextrin/Ti(IV)) was synthesized via the preparation of Fe3O4@nano-dextrinas magnetic support and then its treatment with titanium tetrachloride (TiCl4). The properties of this catalyst were characterized by different kinds of techniques such as FT-IR, FESEM, TEM, ICP, XRF, VSM and TGA. As a first report, the catalytic activity of Fe3O4@nano-dextrin/Ti(IV) was investigated in the synthesisof 2,3-dihydroquinazolin-4(1H)-ones via condensation between 2-aminobenzamide and aldehyde under mild conditions. Good efficiency, a high percentage of product yields, simplicity of operation and easy recovery and reuse of catalyst are some benefits of this protocol.

Keywords


[1] S. Verma, S.L. Jain, B. Sain, Tetrahedron Lett. 51 (2010) 6897-6900.
[2] N. Kumar, S. Verma, S.L. Jain, Chem. Lett. 41 (2012) 920-922.
[3] S. Verma, S.L. Jain, B. Sain, Org. Biomol. Chem. 9 (2011) 2314-2318.
[4] S. Verma, S.L. Jain, Tetrahedron Lett. 53 (2012) 2595-2600.
[5] S. Verma, S.L. Jain, Tetrahedron Lett. 53 (2012) 6055-6058.
[6] W.R. Bowman, M.R. Elsegood, T. Stein, G.W. Weaver, Org. Biomol. Chem. 5 (2007) 103-113.
[7] T. Sugimori, T. Okawa, S. Eguchi, A. Kakehi, E. Yashima, Y. Okamoto, Tetrahedron 54 (1998) 7997-8008.
[8] R.P. Maskey, M. Shaaban, I. Grün-Wollny, H. Laatsch, J. Nat. Prod. 67 (2004) 1131-1134.
[9] M.E. Welsch, S.A. Snyder, B.R. Stockwell, Curr. Opin. Chem. Biol. 14 (2010) 347-361.
[10] H.L. Yale, M. Kalkstein, J. Med. Chem. 10 (1967) 334-336.
[11] J. Wu, X. Du, J. Ma, Y. Zhang, Q. Shi, L. Luo, B. Song, S. Yang, D. Hu, Green Chem. 16 (2014) 3210-3217.
[12] G. Bonola, P. Da Re, M. Magistretti, E. Massarani, I. Setnikar, J. Med. Chem. 11 (1968) 1136-1139.
[13] G.M. Chinigo, M. Paige, S. Grindrod, E. Hamel, S. Dakshanamurthy, M. Chruszcz, W. Minor, M.L. Brown, J. Med. Chem. 51 (2008) 4620-4631.
[14] M. Badolato, F. Aiello, N. Neamati, RSC Adv. 8 (2018) 20894–20921.
[15] K. Ramesh, K. Karnakar, G. Satish, B.A. Kumar, Y. Nageswar, Tetrahedron Lett. 53 (2012) 6936-6939.
[16] A. G. Al-Sehemi, M. Pannipara, A. Kalam, Spectrochim. Acta, Part A, 171 (2017) 97–103.
[17] A. Davoodnia, S. Allameh, A. Fakhari, N. Tavakoli-Hoseini, Chin. Chem. Lett. 21 (2010) 550-553.
[18] R. Navudu, G.R. Mannem, T. Margani, U.M.R. Vanga, H.B. Bollikolla, Asian J. Chem. 28 (2016) 1321-1324.
[19] F.-P. Ma, P.-H. Li, B.-L. Li, L.-P. Mo, N. Liu, H.-J. Kang, Y.-N. Liu, Z.-H. Zhang, Appl. Catal. A 457 (2013) 34-41.
[20] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Chem. Rev. 111 (2011) 3036-3075.
[21] R. Hudson, V. Chazelle, M. Bateman, R. Roy, C.-J. Li, A. Moores, ACS Sustainable Chem. Eng. 3 (2015) 814-820.
[22] R. Nasir Baig, R.S. Varma, Ind. Eng. Chem. Res. 53 (2014) 18625-18629.
[23] J. Safari, L. Javadian, RSC Adv. 4 (2014) 48973-48979.
[24] D. Wang, D. Astruc, Chem. Rev. 114 (2014) 6949-6985.
[25] T.K.H. Ta, M.-T. Trinh, N.V. Long, T.T.M. Nguyen, T.L.T. Nguyen, T.L. Thuoc, B.T. Phan, D. Mott, S. Maenosono, H. Tran-Van, Colloids Surf. A 504 (2016) 376-383.
[26] S. Zhang, H. Niu, Z. Hu, Y. Cai, Y. Shi, J. Chromatogr. A 1217 (2010) 4757-4764.
[27] K. Khoshnevisan, M. Barkhi, D. Zare, D. Davoodi, M. Tabatabaei, Synth. React. in Inorg. Met.-Org. Nano-Met. Chem. 42 (2012) 644-648.
[28] V. Silva, P. Andrade, M. Silva, L.D.L.S. Valladares, J.A. Aguiar, J. Magn. Magn. Mater. 343 (2013) 138-143.
[29] N. Salehi, B.F. Mirjalili, RSC Adv. 7 (2017) 30303-30309.
[30] S. Azad, B. F. Mirjalili, RSC Adv. 6 (2016) 96928-96934.
[31] S. Azad, B. F. Mirjalili, Mol. Diver. 23 (2019) 413–420.
[32] B. F. Mirjalili, M. Imani, Chin Chem Soc. 66 (2019) 1542–1549.
[33] N. Safajoo, B. F. Mirjalili, A. Bamoniri, Polycycl. Arom. Compd. doi: 10.1080/10406638.2019.1666889.
[34] O. Keller Jr, Inorg. Chem. 2 (1963) 783-787.
[35] R. Valbe, M. Tarkanovskaja, U. Mäeorg, V. Reedo, A. Hoop, I. Kink, A. Lõhmus, Open Chem. 13 (2015).
[36] Y. Zhu, L. Zhang, C. Gao, L. Cao, J. Mater. Sci. 35 (2000) 4049-4054.
[37] H.K. Ryu, J.S. Heo, S.I. Cho, S.H. Moon, J. Electrochem. Soc. 146 (1999) 1117-1121.
[38] B.F. Mirjalili, A. Bamoniri, S. Azad, J. Iran. Chem. Soc. 14 (2017) 47-55.
[39] A.D. Rao, B. Vykunteswararao, T. Bhaskarkumar, N. Jogdand, A. Tetrahedron Lett. 56 (2015) 4714-4717.
[40] A. Ghorbani-Choghamarani, M. Norouzi, J. Mol. Catal. A. Chem. 395 (2014) 172-179.
[41] V.B. Labade, P.V. Shinde, M.S. Shingare, Tetrahedron Lett. 54 (2013) 5778-5780.
[42] G. Yassaghi, A. Davoodnia, S. Allameh, A. Zare-Bidaki, N. Tavakoli-Hoseini, B. Korean Chem. Soc. 33 (2012) 2724-2730.
[43] J. Safari, S. Gandomi-Ravandi, J. Mol. Catal. A Chem. 390 (2014) 1-6.
[44] A. Rostami, A. Tavakoli, Chin. Chem. Lett. 22 (2011) 1317-1320.
[45] M. Prakash, S. Jayakumar, V. Kesavan, Synthesis 45 (2013) 2265-2272.
[46] C.K. Khatri, M.S. Patil, G.U.Chaturbhuj, J. Iran. Chem. Soc. 14 (2017) 1683-1689.
[47] B.F.Mirjalili, Z. Zaghaghi, A. Monfared, J. Chin. Chem. Soc. 67 (2020) 197-201.
[48] X. Liu, D.H. Hu, H. Shen, Asian J. Chem. 24 (2012) 1365-1367.
[49] M.J. Mphahlele, M.M. Maluleka, T. Khoza, Bull. Chem. Soc. Ethiop. 28 (2014) 81-90.
[50] F. Miklos, V. Hum, F. Fulop, Arkivoc 2014 (2014) 25-37.
[51] N. Ramesh, M. G. Rao, R. Valara, V. U. Rao, B. H. Babu, Med. Chem. Res. 25 (2016) 1945-1951.
[52] K.H. Narasimhamurthy, Y.R. Girish, N. Thimmaraju, K. S. Rangappa. Chem. Data Collect. 21 (2019) 100230.